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MODERN VIEW ON SYMMETRIES

Topological defect  symmetry defect=

3

Passes the duck test! 

If it looks like a duck, swims like a duck, 
and quacks like a duck, then it probably is 
a duck.

➤ There’s a symmetry operator that commutes with  

➤ Objects carrying the symmetry charge can condense, 
causing spontaneous symmetry breaking 

➤ Can have ’t Hooft anomalies

H



SUPERFLUIDS AT LOW ENERGY
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Superfluid in  Euclidean spacetime  

➤ 1-dimensional vortices (defects) detected by : 

D = 3 X3

Σ1 ⊂ X3

U(1) ssb⟶ 1 θ : X3 → ℳ = ℝ/ℤ

Σ1

Q(Σ1) = ∫ dθ ∈ π1(ℳ) ≃ ℤ

Euclidean X3

Σ1

Vortex is a singularity in the order parameter field  and 
is not dynamical at low energy

θ(x)



SUPERFLUIDS AT LOW ENERGY
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At low energies, there’s a  -form symmetry generated by 
the topological defect 

                                            

➤ Vortex is charged under the  symmetry 

In Lorentzian  the vortex defect in space is an operator 
creating a loop in space (membrane in spacetime) 

➤  symmetry ensures “loop number” is conserved

U(1) 1

U(1)(1)

X3

U(1)(1)

Q(Σ1) = ∫Σ1

dθ ∈ ℤT(α)(Σ1) = exp(iαQ(Σ1))



IN THIS TALK

Explore emergent generalized symmetry  in 
generic ordered phases and its spontaneous breaking 

Why should you care? 

➤ cond-mat: ordered phases are common and  can predict 
exotic disordered phases 

➤ hep-th:  describes the topological sectors of NL Ms 

➤ math-ph:  is related to higher representations of a higher 
group and the twisted fibrations in a Postnikov tower

𝒮π

𝒮π

𝒮π σ

𝒮π
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1. General features of ordered phases and homotopy defects                                                           

2. Emergence of generalized symmetries and their symmetry 
categories 

3. Spontaneous symmetry breaking and nontrivial disordered 
phases



ORDERED PHASES
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A phase where an ordinary internal symmetry  is 
spontaneously broken 

➤ Universal features determined by the SSB pattern 

➤ Ground states labeled by order parameter manifold 

➤ There can be gapped objects called Homotopy defects, 
characterized by the topology of 

G

ℳ

G ssb⟶ H ⊂ G

ℳ = G/H = {gH : g ∈ G}

(e.g., domain walls, vortices, hedgehogs, etc)



HOMOTOPY DEFECTS IN THE IR
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Continuous : Effective field theory is a nonlinear  model 
with target space  describing the Goldstone modes  
[                          ] 

➤ Homotopy defects are singularities of the order parameter 
field . 

Finite : Effective field theory is a TQFT describing the SSB 
ground states 

➤ Homotopy defects are certain  symmetry defects of the 
TQFT

G σ
ℳ = G/H

U : X → ℳ

G

G

Homotopy defects are not dynamical

Callan, Coleman, Wess, Zumino (1969)
Watanabe, Murayama (2014)



HOMOTOPY DEFECTS IN THE UV
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In a generic UV theory (e.g., lattice models), Homotopy 
defects are dynamical 

➤ The prototypical phase diagram: 

➤ Proliferating homotopy defects drives phase transitions. 
(From an IR perspective, proliferation is like summing over all 
defect insertions)

Ordered phase Trivial disordered phase

Gapped  

homotopy defects

Proliferated 

homotopy defects
gc

ZIR = ZNLσM ZIR = 1

G ssb⟶ H G ssb⟶ G



HOMOTOPY DEFECT CLASSIFICATION
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Homotopy defects detected by the -submanifold  are 
classified by 

➤ : defects are detected via linking, are codimension 
, and classification is based on homotopy groups                        

    where  

➤ e.g.,  is the inner automorphism, so codimension 2 
homotopy defects classified by conjugacy classes 

k Σk

Σk ≃ Sk

k + 1

αk : π1(ℳ) → Aut(πk(ℳ))

α1

Cl(π1(ℳ))

Maps(Σk, ℳ = G/H)/homotopy

πk(ℳ)/αk, k = 1, 2,⋯, D − 2, D − 1

[Mermin (1979)]



NEMATIC LIQUID CRYSTAL
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➤ In  dimensional spacetime:D = 3

SO(3) ssb⟶ O(2)

ℳ = SO(3)/O(2) ≃ ℝℙ2

π0(ℝℙ2) = 0 π2(ℝℙ2) = ℤπ1(ℝℙ2) = ℤ2

 flips sign of α2 : π1(ℝℙ2) → Aut(π2(ℝℙ2)) π2(ℝℙ2)

 strings and  particlesℤ2 ℤ≥0

[Volovik, Mineev (1977)]

Ordered phase with SSB pattern 



TOPOLOGICAL DEFECTS
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Since homotopy defects are classified by Maps  modulo 
homotopy, the defects detecting homotopy defects have 
topological properties.

(Σk, ℳ)

They are detected by 
topological defects

⟹ They carry symmetry 
charge of a symmetry 𝒮π

When homotopy defects cannot be cut open (cannot end         )

 
depend only on 

 when 

Maps(Σk, ℳ)/homotopy

Link(Σk, CD−k−1)
∂CD−k−1 = ∅

[Hsin (2022)]

Σk

deform
⟶

CD−k−1

Σk

CD−k−1

Σ′￼k



TOPOLOGICAL CURRENTS
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For abelian homotopy defects classified by , 
number of homotopy defects detected by 

πk(ℳ = G/H) = ℤ
Σk ⊂ X

Q(Σk) = ∫Σk

Ω(k) ∈ ℤ

T(α)(Σk) = exp(iαQ(Σk))

➤  is generator of  pulled back to  (i.e., ) 

➤ , the Poincaré dual of the homotopy defect’s 
location 

➤ : topological defects generating  symmetries:

Ω(k) Hk
dR(ℳ) X Ω(1) = dθ

dΩ(k) = Ĉ

𝒮π U(1)(D−k−1)

[D’Hoker, Weinberg (1994)]

Gaiotto, Kapustin, Seiberg Willet (2015)
Grozdanov, Poovuttikul (2018)
Delacrétaz, Hofman, Mathys (2020)

Brauner (2021)
Armas, Jain (2020)



EMERGENT SYMMETRIES
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In generic UV models, homotopy defects are dynamical 

➤ High energy processes cut open homotopy defects 

➤  is not a symmetry in the UV 

In the IR, homotopy defects are not dynamical 

➤  is a symmetry in the IR 

Generic ordered phases have an emergent  symmetry 

➤ We will always implicitly refer to  at the lowest energy 
scale (the deep IR)

𝒮π

𝒮π

𝒮π

𝒮π



UV Scale
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IR Scale

GENERALIZED SYMMETRIES IN PRACTICE

 includes ordinary/no symmetries, but  and  
can include emergent generalized symmetries 

➤ Emergent higher-form symmetries are exact symmetries, 
not approximate symmetries 

➤ The generalized Landau paradigm is really a 
classification scheme about emergent generalized 
symmetries

𝒮UV 𝒮mid−IR 𝒮IR

𝒮mid−IR 𝒮IR𝒮UV

Iqbal, McGreevy (2022)
McGreevy (2022)
Cheng, Seiberg (2023)

SP, Wen (2023)
Cherman, Jacobson (2023)



THE SYMMETRY 𝒮π
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What is this generalized symmetry? 

➤ magnetic symmetry of  higher gauge theory 

➤ Finite homotopy defect types:  

Examples with :

𝒮π = 𝔾(D−1)
π

𝒮π = (D − 1)-Rep(𝔾(D−1)
π )

G = SO(3)

D SSB Pattern 𝒮π

SO(3) ssb⟶ ℤ2 × ℤ23 𝒮π = 2-Rep(Q8)

SO(3) ssb⟶ 13

SO(3) ssb⟶ SO(2)4 0 → ℤ(2) → 𝔾(3)
π → ℤ(1) → 0

ℤ(1)
2 (𝒮π = 2-Rep(ℤ2))



ABELIAN HOMOTOPY DEFECTS
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Consider general abelian homotopy defects 

➤ Defects of different dimension are independent from one 
another 

➤ Trivial   classified by . 

Each  describes symmetry charges of a -form 
symmetry. 

➤ -form symmetry group is the Pontryagin dual of 
 

αk : π1(ℳ) → Aut(πk(ℳ)) ⟹ πk(ℳ)

πk(ℳ) (D − k − 1)

(D − k − 1)
πk(ℳ)

G(D−k−1) = Hom(πk(ℳ), U(1))



CODIMENSION 2 HOMOTOPY DEFECTS
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Since we only care about , let’s truncate  to : 

 from codimension 2 homotopy defects of  is the same as 
 from  

➤ These homotopy defects are  magnetic defects 

➤  the magnetic symmetry of  gauge theory 

➤ Finite : 

π1(ℳ) ℳ ℳτ≤1

𝒮π ℳ
𝒮π ℳτ≤1

π1(ℳ)

𝒮π = π1(ℳ)

π1(ℳ) 𝒮π = (D − 1)-Rep(π1(ℳ))

πk(ℳτ≤1) = {πk(ℳ) k = 1
0 else

ℳτ≤1 = Bπ1(ℳ)



GENERAL CONNECTED ℳ
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Since  homotopy defects for  are absent in  
dimensions, we truncate  to : 

 from  is the same as  from  

➤  is called the th Postnikov stage of  

➤ Model connected homotopy -types.

πk(ℳ) k > D − 1 D
ℳ ℳτ≤D−1

𝒮π ℳ 𝒮π ℳτ≤D−1

ℳτ≤n n ℳ

n

πk(ℳτ≤n) = {πk(ℳ) 1 ≤ k ≤ n
0 else



GENERAL CONNECTED ℳ
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Postnikov stages obey the fibrations  

Classified by the twisted -cocycle 

➤  is the classifying space of an -group: , 

➤ Homotopy defects are  magnetic defects 

➤  magnetic symmetry of  higher gauge theory 

➤ For finite , it is 

(2 ≤ n ≤ D − 1)

(n + 1)

ℳτ≤n n ℳτ≤n = B𝔾(n)
π

𝔾(D−1)
π

𝒮π = 𝔾(D−1)
π

𝔾(D−1)
π 𝒮π = (D − 1)-Rep(𝔾(D−1)

π )

Bnπn(ℳ) → ℳτ≤n → ℳτ≤n−1

[βn+1] ∈ Hn+1
αn

(ℳτ≤n−1, πn(ℳ))

[Baez, Shulman (2009)]

𝔾(n)
π = (π1(ℳ) ; π2(ℳ), α2, β3 ; ⋯ ; πn(ℳ), αn, βn+1)

αn : π1(ℳ) → Aut(πn(ℳ))



CHECK IN
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In the deep IR, homotopy defects carry symmetry charge of 
an emergent generalized symmetry  

➤ magnetic symmetry of  higher gauge theory  

➤  includes invertible and non-invertible, -form and 
higher-form symmetries. 

What are some physical applications of ? 

1. Spontaneous symmetry breaking (we’ll discuss here) 

2. Mixed ’t Hooft anomaly with  (we won’t discuss here)

𝒮π

𝒮π = 𝔾(D−1)
π

𝒮π 0

𝒮π

G



SPONTANEOUSLY BREAKING 𝒮π
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 is not spontaneously broken in the ordered phase 

➤ If it were, ordered phases would have GSD dependent on 
space’s topology and exotic gapless modes 

➤ Homotopy defects are gapped extended objects in the 
spectrum and are confined in the IR (i.e., area law) 

 can spontaneously break, driving a transition out of the 
ordered phase 

➤ Typically leads to an exotic phase of matter 

➤ Homotopy defects will deconfine (i.e., perimeter law)

𝒮π

𝒮π



SPONTANEOUSLY BREAKING 𝒮π
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What happens to the microscopic  symmetry when 
spontaneously breaking ? 

A physical argument 

➤ Ordered vacua ( ) want to confine homotopy 
defects 

➤  SSB vacua have a  symmetry charge condensate that 
wants to deconfine homotopy defects 

➤ The latter contradicts the former, so spontaneously 
breaking  must restore 

G
𝒮π

G ssb⟶ H

𝒮π 𝒮π

𝒮π G



TWO TYPES OF DISORDERED PHASES
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Without defect suppression:
Ordered phase Trivial disordered phase

Gapped  

homotopy defects

Proliferated 

homotopy defects
gc

ZIR = ZNLσM ZIR = 1

With perfect defect suppression:

G ssb⟶ H G ssb⟶ G𝒮π
ssb⟶ 𝒮π

Ordered phase Nontrivial disordered phase

Gapped, confined  

homotopy defects

Gapped, deconfined 

homotopy defects
τc

ZIR = ZNLσM ZIR = nontrivial

G ssb⟶ H G ssb⟶ G𝒮π
ssb⟶ 𝒮π 𝒮π

ssb⟶ 𝒞π

Chubukov, Senthil, Sachdev (1994)
Lammert, Rokhsar, Toner (1995)
Motrunich, Vishwanath (2004)

Grover, Senthil (2011)
Xu, Ludwig (2012)
Zhu, Lan, Wen (2019)



THE POWER OF SYMMETRY
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 is a non-perturbative tool to identify exotic phases 
neighboring ordered phases 
𝒮π

D Ordered phase G ssb⟶ H

U(1) × U(1) ssb⟶ 14 U(1)(1) ssb⟶ 1

U(1) ssb⟶ 14

SO(3) ssb⟶ ℤ2 × ℤ23 Rep(Q8)(1) ssb⟶ 1

SO(3) ssb⟶ 13 ℤ(1)
2

ssb⟶ 1

Nontrivial disordered phase 𝒮π
ssb⟶ 𝒞π

none

➤ For finite : Nontrivial disordered phase is the 
deconfined phase of untwisted  higher gauge theory

𝔾(D−1)
π

𝔾(D−1)
π



FUN WITH : PART IG = SO(3)
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Consider SSB pattern  with finite  in  

where  is the cover of  that lifts it to a subgroup of . 

➤ e.g.,  and  

➤  homotopy defects classified by conjugacy classes  

➤ Emergent symmetry  

Let’s build a Euclidean lattice model with the  SSB phase

SO(3) ssb⟶ H H D = 3

H̃ H SU(2)

H = ℤN = H̃ H = ℤ2 × ℤ2 ⟹ H̃ = Q8

1D Cl(H̃)

𝒮π = 2-Rep(H̃)

𝒮π

π0(ℳ) = 0 π1(ℳ) = H̃ π2(ℳ) = 0

ℳ = SO(3)/H



FUN WITH : PART IG = SO(3)

27

Consider the order parameter presentation 

➤ On lattice sites ,  rotors  with . 
 realized as  transforming  in  of  

➤ On lattice edges ,  gauge fields  in  of  
restricted to . 

Why? 

➤ Gauge redundancy ,  restricts physical  

values in  

➤ 1D homotopy defects realized as  gauge fluxes

i G̃ = SU(2) zi ∈ ℂ2 z†
i zi = 1

SO(3) SU(2) zi □ SU(2)

(ij) H̃ aij □ SU(2)
H̃

zi ∼ h̃izi aij ∼ h̃iaijh̃−1
j zi

SU(2)/H̃ = SO(3)/H ≡ ℳ

H̃



FUN WITH : PART IG = SO(3)
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➤  term wants  (gauge charges) to condense 

➤  term penalizes  homotopy defects (  gauge fluxes)

J zi

K π1(ℳ) H̃

S = − J∑
(ij)

z†
i aijzj + K∑

(ijk)

Tr [(δa)ijk]

Ordered phase Nontrivial disordered phase

Kc

Jc

ZIR = ZNLσM ZIR = D(H̃)SO(3) ssb⟶ H SO(3) ssb⟶ SO(3)

𝒮π
ssb⟶ 𝒮π Rep(H̃)(1) ssb⟶ 1

(Higgs phase) (Deconfined phase)

(δa)ijk = aijajka−1
iki j

k

l



FUN WITH : PART IIG = SO(3)

29

Consider SSB pattern  [ ] in   

➤ Because  is trivial 

➤ Consider 2 & 3 cochains  &  on  

magnetic symmetry of  gauge theory 

➤ Non-invertible symmetry since  does not have a 
Pontryagin dual 3-group

SO(3) ssb⟶ SO(2) ℳ = S2 D = 4

π1(S2)

x(2) x(3) B𝔾(3)
π = S2

τ≤3

𝒮π = 𝔾(3)
π

𝔾(3)
π

π0(S2) = 0 π3(S2) = ℤπ1(S2) = 0 π2(S2) = ℤ

𝔾(3)
π = (π2(S2) ; π3(S2), β4) [β4] ∈ H4(B2ℤ, ℤ)

dx(3) = x(2) ∪ x(2) ≡ β4(x(2))

[Chen, Tanizaki (2023)]

dx(2) = 0



FUN WITH : PART IIG = SO(3)
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To construct effective theory for the nontrivial disordered 
phase, consider the  presentation of the  NL M 

➤  1-form gauge field  

Motivates us to introduce the  2-form gauge field  and 
gauge invariant field strengths

ℂℙ1 S2 σ

U(1) A(1)

U(1) B(2)

F(2) = dA(1) H(3) =
1

2π
A(1) ∧ dA(1) + dB(2)

∫S2

1
2π

dA(1) ∈ π2(S2) ∫S3

1
4π2

A(1) ∧ dA(1) ∈ π3(S2)

A(1) ∼ A(1) + df (0)
1 B(2) ∼ B(2) + df (1)

2 −
1

2π
f (0)
1 dA(1)



FUN WITH : PART IIG = SO(3)
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Effective field theory of the nontrivial disordered phase 

Dualizing  to the compact boson  

➤ Massless axion electrodynamics enriched by !

B(2) ϕ(0)

SO(3)

SIR = ∫M4

1
2e2

F(2) ∧ ⋆F(2) +
1

4πv2
H(3) ∧ ⋆H(3)

SIR = ∫M4

1
2e2

F(2) ∧ ⋆F(2) +
v2

2
dϕ(0) ∧ ⋆dϕ(0) +

1
4π2

ϕ(0)F(2) ∧ F(2)

Ordered phase Nontrivial disordered phase

τc

ZS2 NLσM

SO(3) ssb⟶ SO(2) 𝒮π
ssb⟶ 𝒞π

Axion 
electro.



SUMMARY

Generalized symmetries emerge in ordered phases  
➤ Symmetry charge carried by homotopy defects 

➤ Symmetry defects described by -representations of 
 

Their spontaneous breaking gives rise to 
nontrivial disordered phases 
➤  is a non-perturbative tool to identify exotic phases 

neighboring ordered phases

(D − 1)
𝔾(D−1)

π = (π1(ℳ) ; π2(ℳ), α2, β3 ; ⋯ ; πD−1(ℳ), αD−1, βD)

𝒮π
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