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MODERN VIEW ON SYMMETRIES

Topological defect = symmetry defect

Passes the duck test!

4°\ If it looks like a duck, swims like a duck,
. and quacks like a duck, then 1t probably is
a duck.

» There’s a symmetry operator that commutes with H

» Objects carrying the symmetry charge can condense,

causing spontaneous symmetry breaking

» (Can have 't Hooft anomalies



SUPERFLUIDS AT LOW ENERGY

Superfluid in D = 3 Fuclidean spacetime X;
Ul =2 1 0:X, > M=R/Z

» 1-dimensional vortices (defects) detected by X, C Xj:

v T -
Fﬂ o= [ a0 e~z
Jx,
~~__"Euclidean X;|

Vortex is a singularity in the order parameter field (x) and

is not dynamical at low energy



SUPERFLUIDS AT LOW ENERGY

At low energies, there’s a U(1) 1-form symmetry generated by

the topological defect

TOE,) = expiaQ(Z))) Q)= doe”
J3,

» Vortex is charged under the U(1)"" symmetry

In Lorentzian X; the vortex defect in space is an operator

creating a loop in space (membrane in spacetime)

» U(DW symmetry ensures “loop number” is conserved



IN THIS TALK

Explore emergent generalized symmetry &' in

generic ordered phases and its spontaneous breaking

Why should you care?

» cond-mat: ordered phases are common and &', can predict

exotic disordered phases

» hep-th: & describes the topological sectors of NLoMs

» math-ph: & 1is related to higher representations of a higher

eroup and the twisted fibrations in a Postnikov tower



IN THIS TALK

Explore emergent generalized symmetry &' in

generic ordered phases and its spontaneous breaking

1. General features of ordered phases and homotopy defects

2. Emergence of generalized symmetries and their symmetry

categories

3. Spontaneous symmetry breaking and nontrivial disordered

phases



ORDERED PHASES

A phase where an ordinary internal symmetry G is

spontaneously broken

» Universal features determined by the SSB pattern

G e

» (Ground states labeled by order parameter manifold
M =G/H={gH:ge G}

» There can be gapped objects called Homotopy defects,
characterized by the topology of

(e.g., domain walls, vortices, hedgehogs, etc)



HOMOTOPY DEFECTS IN THE IR

Continuous G: Effective field theory is a nonlinear ¢ model

with target space # = G/H describing the Goldstone modes

[ Callan, Coleman, Wess, Zumino (1969)
Watanabe, Murayama (2014)

» Homotopy defects are singularities of the order parameter
field U: X - M.

Finite G: Effective field theory is a TQFT describing the SSB

ocround states

» Homotopy defects are certain G symmetry detects of the
TQFT

Homotopy defects are not dynamical



HOMOTOPY DEFECTS IN THE UV

In a generic UV theory (e.g., lattice models), Homotopy

defects are dynamical

» The prototypical phase diagram:

Ordered phase Trivial disordered phase
G g G > G
Zin = Zni omt Gapped | Proliferated Zie = 1

Ec

homotopy defects homotopy defects

» Proliferating homotopy defects drives phase transitions.

(From an IR perspective, proliferation is like summing over all

defect insertions)
9



HOMOTOPY DEFECT CLASSIFICATION

Homotopy defects detected by the k-submanifold %, are

classified by
Maps(%,, # = G/H)/homotopy

> ¥~ S defects are detected via linking, are codimension

k+ 1, and classification is based on homotopy groups
(M)l ay, k=1,2,--- D=2, D—1
where a; : #)((M) = Atz (M)  |stermin (199)

> e.g., a; 1s the inner automorphism, so codimension 2

homotopy defects classified by conjugacy classes Cl(z(4))
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Ordered phase with SSB pattern

SO(3) =2 0(2)

M = SO3)/0Q2) ~ RP?

» In D = 3 dimensional spacetime: [volovit Mineeo (1977)
1 (RP?) = 0 m(RP?) = Z, 1,(RP?) = Z
a, : le(lR[P’z) — Aut(nz(Rl]j’z)) flips sign of JZ'Z(R[FDz)

Z, strings and Z., particles

11



TOPOLOGICAL DEFECTS

Since homotopy defects are classified by Maps(Z,, #) modulo

homotopy, the defects detecting homotopy defects have

topological properties.

Maps(2,, .4 )/homotopy
depend only on
Link(%,, Cp_;_;) when
0Cp_j_1 =D

CD—k—l CD—k—l
deform

When homotopy defects cannot be cut open (cannot end psin 20221 )

They are detected by __ They carry symmetry
topological defects charge of a symmetry &



TOPOLOGICAL CURRENTS

For abelian homotopy defects classified by # (/4 = G/H) = Z,

number of homotopy defects detected by X, C X (pwoker, weinbery (1994)

o0z =| QW ez
JT,

» QW is generator of Hé‘R(/%) pulled back to X (i.e., QY = dg)

> dQW = C, the Poincaré dual of the homotopy defect’s

location

» & : topological defects generating U(1)P=*=D symmetries:

Guaiotto, Kapustin, Seiberg Willet (2015)

Grozdanov, Poovuttikul (2018) ((1)( ) — (' Q( ))

Delacrétaz, Hofman, Mathys (2020) T Zk i eXp 1 Zk

Armas, Jain (2020) 13
Brauner (2021)



EMERGENT SYMMETRIES

In generic UV models, homotopy defects are dynamical
» High energy processes cut open homotopy defects

» & _is not a symmetry in the UV

In the IR, homotopy detects are not dynamical

» & _1s a symmetry in the IR
Generic ordered phases have an emergent & symmetry

» We will always implicitly refer to &' at the lowest energy
scale (the deep IR)
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GENERALIZED SYMMETRIES IN PRACTICE

IR Scale

CSDUV S mid—IR S IR

Syy includes ordinary/no symmetries, but & ., g and S

can include emergent generalized symmetries

» Emergent higher-form symmetries are exact symmetries,

. . Igbal, McGreevy (2022) SP, Wen (2023)
IlOt appI'OXImate Symmetrles McGreevy (2022) Cherman, Jacobson (2023)
Cheng, Seiberg (2023)

» 'The generalized Landau paradigm is really a
classification scheme about emergent generalized

symmetries
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THE SYMMETRY &

What is this generalized symmetry?
> &_=magnetic symmetry of GP~D higher gauge theory
» Finite homotopy defect types: & = (D — 1)—Rep(G§TD —y

Examples with G = SO(3):

D SSB Pattern S,

3 SO(3) =2 1 7V (S, =2-Rep(Zy))

3 S03) 2 7, x 7, Sz = 2-Rep(Qy)

4 SO3) =2 50(2) 0279 5GP - 7zM 50
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ABELIAN HOMOTOPY DEFECTS

Consider general abelian homotopy defects

» Defects of different dimension are independent from one

another
» Trivial a; : m(M) — Aut(m(M)) —> classified by = ().

Fach () describes symmetry charges of a (D — k — 1)-form

symmetry.

» (D — k — 1)-form symmetry group is the Pontryagin dual of
(M)

G PV = Hom(m (M), U(1))
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CODIMENSION 2 HOMOTOPY DEFECTS

Since we only care about m; (), let’s truncate M to M .-

r (M) k=1

0 else

ﬂk(%rﬁl) — {

%Tﬁl — Bﬂl(%)

& from codimension 2 homotopy defects of # is the same as
CS)]Z' from %TSI

» These homotopy defects are 7z (#) magnetic detects

» & = the magnetic symmetry of z;(.#) gauge theory

» Finite m(M): &, = (D — 1)-Rep(a;(A))
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GENERAL CONNECTED

Since 1, () homotopy defects for k > D — 1 are absent in D

dimensions, we truncate 4 to M _.p_i:

0 else

(M <) = {

&, from A is the same as &, from M ,.p_;
» M., 1s called the nth Postnikov stage of

» Model connected homotopy n-types.
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GENERAL CONNECTED

Postnikov stages obey the fibrations (2 <n <D —1)
B'r (M) — M <y — M o<y
Classified by the twisted (n + 1)-cocycle (e shuimen 2009
5 € HIV (M gy (M) a2 7y (M) — At(m, (M)
> M., is the classifying space of an n-group: /., = BGY",
Gy = (m(M) 5 m( M), 0, 5 o 5 7 (M), 0, fF)
» Homotopy defects are G°~1 magnetic defects

» &_ = magnetic symmetry of G¥~V higher gauge theory

> For finite GPV, it is & = (D — 1)-Rep(GP~D) 0



CHECK IN

In the deep IR, homotopy defects carry symmetry charge of

an emergent generalized symmetry &,
> & = magnetic symmetry of G~ higher gauge theory

» & _includes invertible and non-invertible, O-form and

higher-form symmetries.

What are some physical applications of & 7

1. Spontaneous symmetry breaking (we’ll discuss here)

2. Mixed 't Hooft anomaly with G (we won’t discuss here)

21



SPONTANEOUSLY BREAKING & .

& _ 1s not spontaneously broken in the ordered phase

» If it were, ordered phases would have GSD dependent on

space’s topology and exotic gapless modes

» Homotopy defects are gapped extended objects in the

spectrum and are confined in the IR (i.e., area law)

& can spontaneously break, driving a transition out of the

ordered phase
» Typically leads to an exotic phase of matter

» Homotopy defects will deconfine (i.e., perimeter law)

22



SPONTANEOUSLY BREAKING & .

What happens to the microscopic G symmetry when

spontaneously breaking & 7

A physical argument

b
> Ordered vacua (G — H) want to confine homotopy

detects

> & S5B vacua have a & symmetry charge condensate that

wants to deconfine homotopy defects

» The latter contradicts the former, so spontaneously

breaking &', must restore G

23



TWO TYPES OF DISORDERED PHASES

Without defect suppression:

Ordered phase Trivial disordered phase
G2H s 3¢ G > G
Zin = Zni om Gapped | Proliferated Zin =1

8¢

homotopy defects homotopy defects

. . Chubukov, Senthil, Sachdev (1994) Grover, Senthil (2011)
Wlth perfeCt defeCt SuppreSS]_Oﬂ: Lammert, Rokhsar, Toner (1995) Xu, Ludwig (2012)

Motrunich, Vishwanath (2004) Zhu, Lan, Wen (2019)
Ordered phase Nontrivial disordered phase
ssb ssb ssb ssb
G—H J&8,— 3, G—G S8 — %,

Gapped, confined Gapped, deconfined Zi =

Zir = ZNLoM nontrivial

homotopy defects homotopy defects

24



THE POWER OF SYMMETRY

&' 1s a non-perturbative tool to identify exotic phases

neighboring ordered phases

D Ordered phase G >0 H Nontrivial disordered phase &, RN @,
4 U(1) Sshy 1 none

4 Ul x U(1) 2> 1 UMD 22,

3 SO(3) = 1 70 2

3 S0(3) 22 7, x 7, Rep(Qy)) =% 1

> For finite GP~V: Nontrivial disordered phase is the
deconfined phase of untwisted G~V higher gauge theory

25



FUN WITH G = SO3): PART I

Ssb

Consider SSB pattern SO(3) — H with finite H in D =3
M = SOQB)H
mo( M) =0 m (M) =H (M) =0

where H is the cover of H that lifts it to a subgroup of SU(2).
» eg, H=Zy=Hand H=7,Xx7Z, = H= Q4

» 1D homotopy defects classified by conjugacy classes CI(H)

> Fmergent symmetry &, = 2-Rep(H)

Let’s build a Euclidean lattice model with the & _ SSB phase

26



FUN WITH G = SO3): PART I

Consider the order parameter presentation

» On lattice sites i, G = SU(2) rotors z; € C* with z;zl- = 1.
SO(3) realized as SU(2) transforming z; in [] of SU(2)

» On lattice edges (ij), H gauge fields a; in [] of SU(2)
restricted to H.

Why?

» Gauge redundancy z; ~ h;z, a;; ~ 711-611-]-72]-_1 restricts physical z;

values in SUQR)/H = SO3)/H = M

» 1D homotopy defects realized as H gauge fluxes

27



FUN WITH G = SO3): PART I

k
S=-JY gag+K Y, Tr|@ay]
(@) (k)
i j (0a);; = aijajkaizl

» J term wants z; (gauge charges) to condense

» K term penalizes (/) homotopy defects (H gauge fluxes)

Ordered phase Nontrivial disordered phase
(Higgs phase) (Deconfined phase)
ZiR = ZNLom SOB3) =2 H P . S0(3)  Zyg = D(#H)
SS ¢ ~ SS
S b, S —  Rep()M 2%

Je
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FUN WITH G = SO3): PART II

Consider SSB pattern SO3) -2 SOQ2) [# = $?| in D = 4

75(S%) =0 (5% =0 m5(S?) = Z (8% = Z
» Because 71'1(52) 1s trivial
GY) = (my(S?) 5 m;3(S?), B*) [p*] € HY(B*Z, Z)

» Consider 2 & 3 cochains x? & x® on BGY) = §?2

<3
dx® =0 dx® = xP y x® = pH(x1?)
& = magnetic symmetry of Gf) gauge theory

» Non-invertible symmetry since G does not have a

Pontryagin dual 3-group (e, muniari 2009 v



FUN WITH G = SO3): PART II

To construct effective theory for the nontrivial disordered
phase, consider the CP! presentation of the S NLoM

» U(1) 1-form gauge field A(V

T T
—dAD e 7,(5?) —AD AdAD e 7.(5%)
27 2 4772 .

o SZ o S3

Motivates us to introduce the U(1) 2-form gauge field B*® and

gauge invariant field strengths

FO — gaM® HG = LA(l) AdAD £ dB®@
2r

AD o AD 4 dfl(O) B®@  B® dfz(l) _ 2Lf1(0)dA(l)
T
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FUN WITH G = SO3): PART II

Effective field theory of the nontrivial disordered phase

-1 |
SR = ﬁF@) A *F@ 4 . ~H® A *H®
Ju, 2e TV

Dualizing B® to the compact boson ¢

2

- ) 1
SR = FF(Z) A*xF® 4 7d¢(0) A %dp© - — HOFQ A F@
" M4 € T

» Massless axion electrodynamics enriched by SO(3)!

Ordered phase Nontrivial disordered phase =
7. Axion
> b <<b «sb electro.
SO3) — SO2) S, — 6,

T 31
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(Generalized symmetries emerge in ordered phases

» Symmetry charge carried by homotopy defects

» Symmetry defects described by (D — 1)-representations of
GV = (m (M) 5 (M), 00, B -+ 5 mp_ (M), ap_y, BP)

Their spontaneous breaking gives rise to
nontrivial disordered phases

> & _is a non-perturbative tool to identify exotic phases

neighboring ordered phases
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