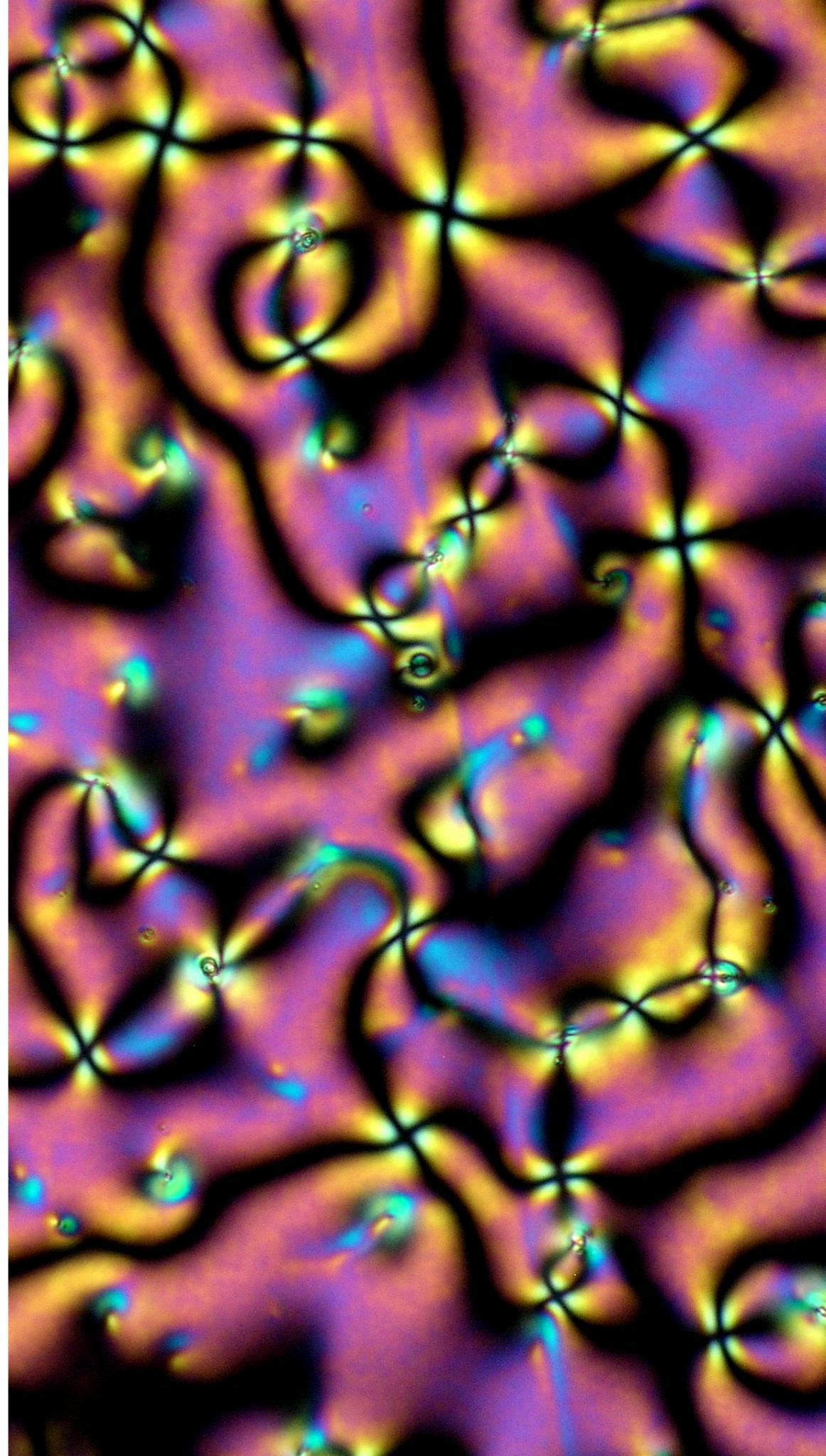


GENERALIZED SYMMETRIES AND ORDERED PHASES

Sal Pace (MIT)

Based on:

- SP, arXiv: 2308.05730
- SP, C Zhu, A Beaudry, and X-G Wen, *in preparation*



A SYMMETRY RENAISSANCE

Our understanding of symmetry has been revolutionized
through modern generalizations

A SYMMETRY RENAISSANCE

Our understanding of symmetry has been revolutionized
through modern generalizations

Higher-form symmetry

Non-invertible symmetry

Dipole symmetry

Loop group symmetry

Subsystem symmetry

Higher-group symmetry

Harmonic symmetry

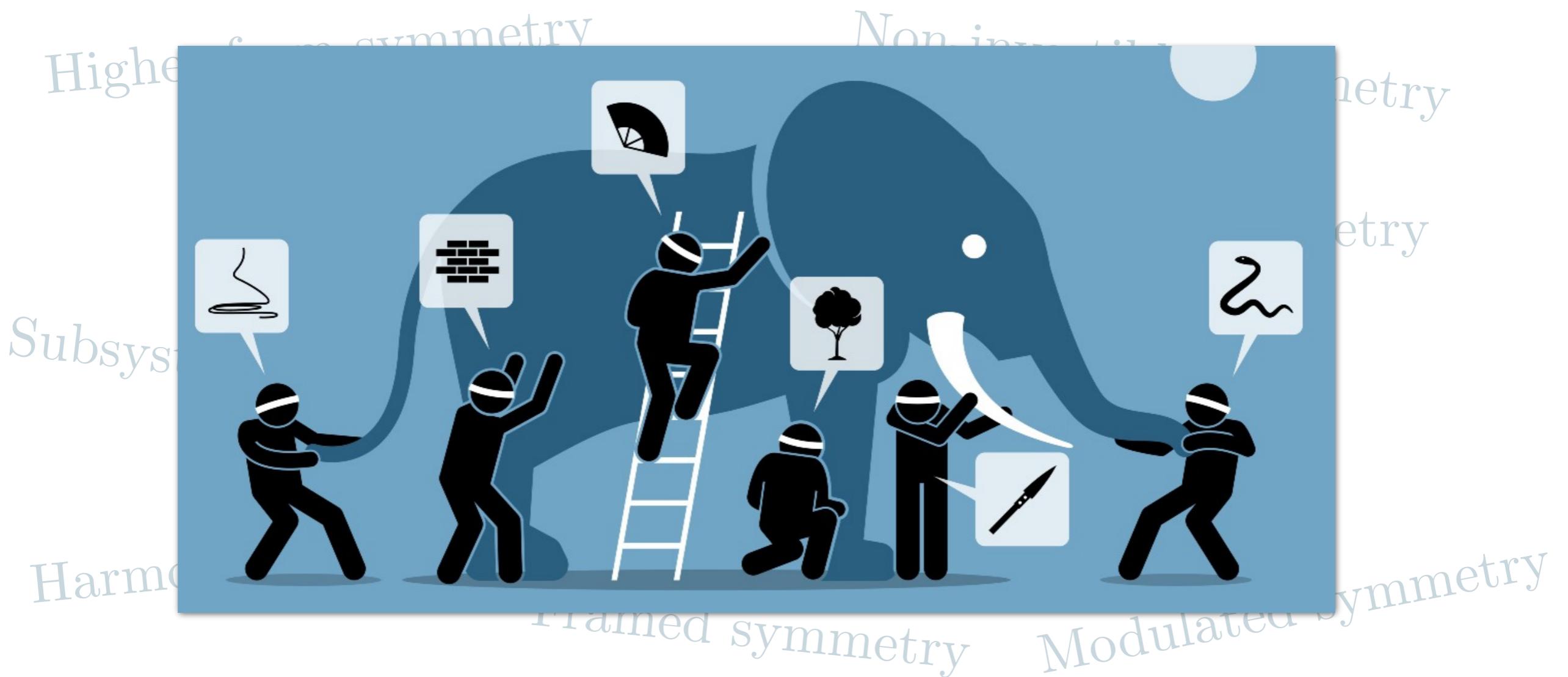
Biform symmetry

Framed symmetry

Modulated symmetry

A SYMMETRY RENAISSANCE

Our understanding of symmetry has been revolutionized
through modern generalizations



MODERN VIEW ON SYMMETRIES

Topological defect = symmetry defect

Passes the duck test!

*If it looks like a duck, swims like a duck,
and quacks like a duck, then it probably is
a duck.*

- There's a **symmetry operator** that commutes with H
- Objects carrying the **symmetry charge** can condense, causing spontaneous symmetry breaking
- Can have 't Hooft anomalies

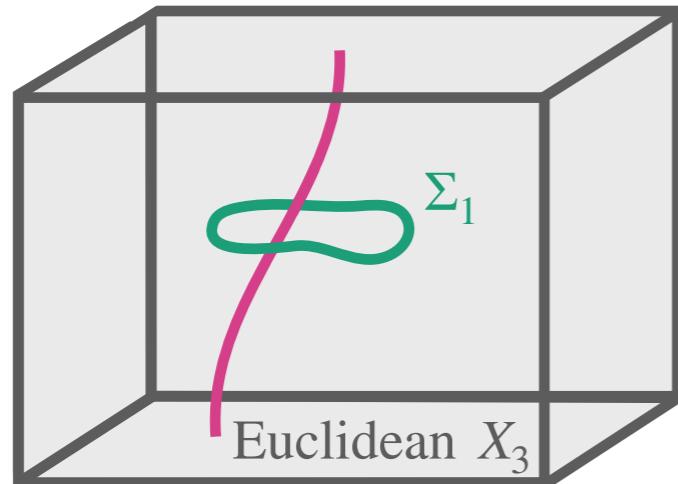
SUPERFLUIDS AT LOW ENERGY

Superfluid in $D = 3$ Euclidean spacetime X_3

$$U(1) \xrightarrow{\text{ssb}} 1$$

$$\theta : X_3 \rightarrow \mathcal{M} = \mathbb{R}/\mathbb{Z}$$

- 1-dimensional **vortices (defects)** detected by $\Sigma_1 \subset X_3$:



$$Q(\Sigma_1) = \int_{\Sigma_1} d\theta \in \pi_1(\mathcal{M}) \simeq \mathbb{Z}$$

Vortex is a singularity in the **order parameter** field $\theta(x)$ and is not dynamical at low energy

SUPERFLUIDS AT LOW ENERGY

At low energies, there's a $U(1)$ 1-form symmetry generated by the topological defect

$$T^{(\alpha)}(\Sigma_1) = \exp(i\alpha Q(\Sigma_1)) \quad Q(\Sigma_1) = \int_{\Sigma_1} d\theta \in \mathbb{Z}$$

- **Vortex** is charged under the $U(1)^{(1)}$ symmetry

In Lorentzian X_3 the **vortex defect** in space is an operator creating a loop in space (*membrane in spacetime*)

- $U(1)^{(1)}$ symmetry ensures “loop number” is conserved

IN THIS TALK

Explore emergent **generalized symmetry** \mathcal{S}_π in
generic ordered phases and its spontaneous breaking

Why should you care?

- cond-mat: ordered phases are common and \mathcal{S}_π can predict exotic disordered phases
- hep-th: \mathcal{S}_π describes the topological sectors of **NL σ Ms**
- math-ph: \mathcal{S}_π is related to higher representations of a higher group and the twisted fibrations in a Postnikov tower

IN THIS TALK

Explore emergent **generalized symmetry** \mathcal{S}_π in
generic **ordered phases** and its spontaneous breaking

1. General features of **ordered phases** and **homotopy defects**
2. Emergence of **generalized symmetries** and their symmetry categories
3. Spontaneous symmetry breaking and nontrivial disordered phases

ORDERED PHASES

A phase where an ordinary internal symmetry G is spontaneously broken

- Universal features determined by the SSB pattern

$$G \xrightarrow{\text{ssb}} H \subset G$$

- Ground states labeled by order parameter manifold

$$\mathcal{M} = G/H = \{gH : g \in G\}$$

- There can be gapped objects called Homotopy defects, characterized by the topology of \mathcal{M}

(e.g., *domain walls, vortices, hedgehogs, etc*)

HOMOTOPY DEFECTS IN THE IR

Continuous G : Effective field theory is a nonlinear σ model with target space $\mathcal{M} = G/H$ describing the Goldstone modes

[*Callan, Coleman, Wess, Zumino (1969)*
 Watanabe, Murayama (2014)]

- Homotopy defects are singularities of the order parameter field $U : X \rightarrow \mathcal{M}$.

Finite G : Effective field theory is a TQFT describing the SSB ground states

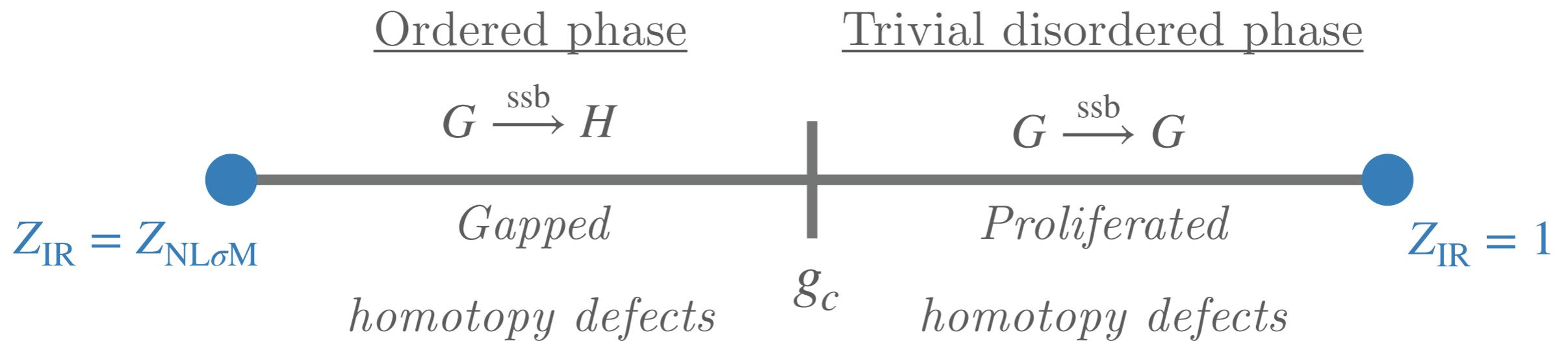
- Homotopy defects are certain G symmetry defects of the TQFT

Homotopy defects are not dynamical

HOMOTOPY DEFECTS IN THE **UV**

In a generic **UV** theory (e.g., lattice models), **Homotopy defects** are dynamical

- The prototypical phase diagram:



- Proliferating **homotopy defects** drives phase transitions.
(*From an **IR** perspective, proliferation is like summing over all defect insertions*)

HOMOTOPY DEFECT CLASSIFICATION

Homotopy defects detected by the k -submanifold Σ_k are classified by

$$\text{Maps}(\Sigma_k, \mathcal{M} = G/H)/\text{homotopy}$$

- $\Sigma_k \simeq S^k$: defects are detected via linking, are codimension $k + 1$, and classification is based on homotopy groups

$$\pi_k(\mathcal{M})/\alpha_k, \quad k = 1, 2, \dots, D-2, D-1$$

where $\alpha_k : \pi_1(\mathcal{M}) \rightarrow \text{Aut}(\pi_k(\mathcal{M}))$ [Mermin (1979)]

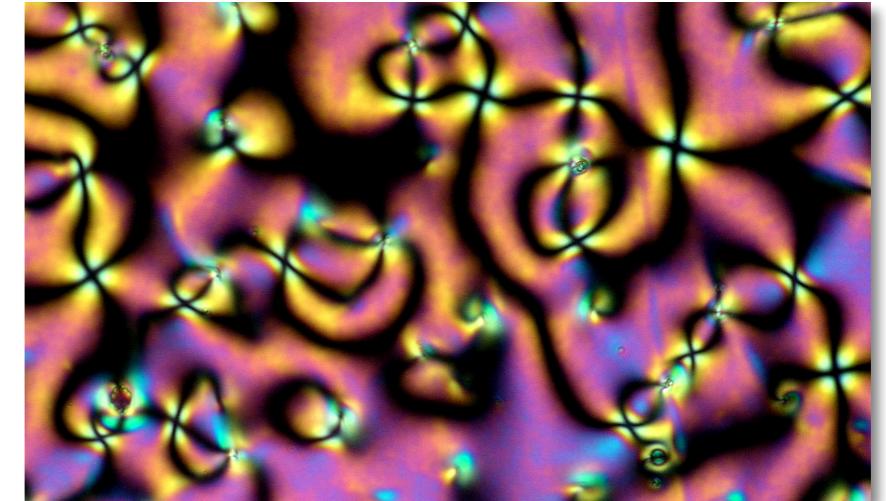
- e.g., α_1 is the inner automorphism, so codimension 2 homotopy defects classified by conjugacy classes $\text{Cl}(\pi_1(\mathcal{M}))$

NEMATIC LIQUID CRYSTAL

Ordered phase with SSB pattern

$$SO(3) \xrightarrow{\text{ssb}} O(2)$$

$$\mathcal{M} = SO(3)/O(2) \simeq \mathbb{RP}^2$$



► In $D = 3$ dimensional spacetime: [Volovik, Mineev (1977)]

$$\pi_0(\mathbb{RP}^2) = 0$$

$$\pi_1(\mathbb{RP}^2) = \mathbb{Z}_2$$

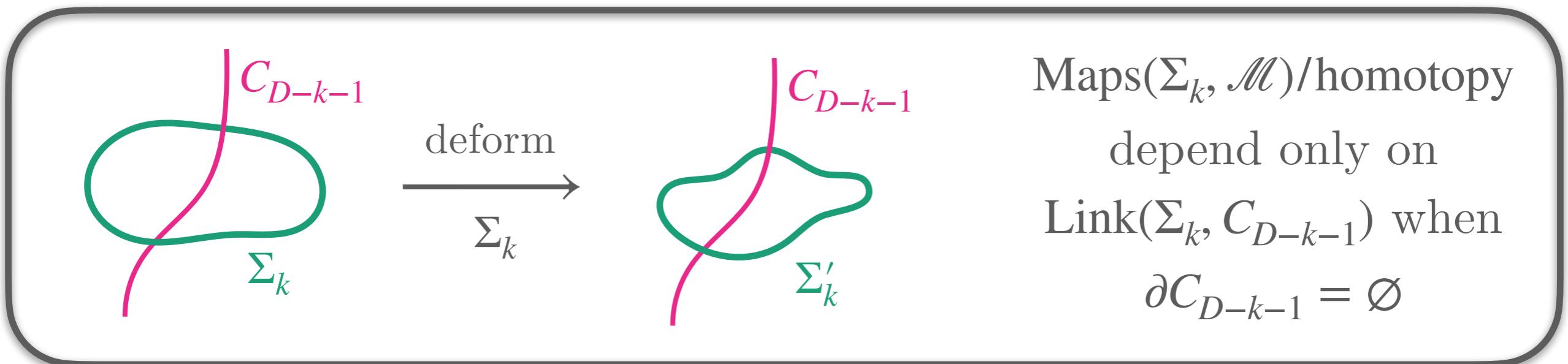
$$\pi_2(\mathbb{RP}^2) = \mathbb{Z}$$

$\alpha_2 : \pi_1(\mathbb{RP}^2) \rightarrow \text{Aut}(\pi_2(\mathbb{RP}^2))$ flips sign of $\pi_2(\mathbb{RP}^2)$

\mathbb{Z}_2 strings and $\mathbb{Z}_{\geq 0}$ particles

TOPOLOGICAL DEFECTS

Since **homotopy defects** are classified by $\text{Maps}(\Sigma_k, \mathcal{M})$ modulo homotopy, the **defects detecting homotopy defects** have topological properties.



When **homotopy defects** cannot be cut open (cannot end [*Hsin (2022)*])

They are detected by
topological defects

They carry symmetry
charge of a **symmetry** \mathcal{S}_π

TOPOLOGICAL CURRENTS

For abelian **homotopy defects** classified by $\pi_k(\mathcal{M} = G/H) = \mathbb{Z}$,
number of homotopy defects detected by $\Sigma_k \subset X$ [*D'Hoker, Weinberg (1994)*]

$$Q(\Sigma_k) = \int_{\Sigma_k} \Omega^{(k)} \in \mathbb{Z}$$

- $\Omega^{(k)}$ is generator of $H_{\text{dR}}^k(\mathcal{M})$ pulled back to X (i.e., $\Omega^{(1)} = d\theta$)
- $d\Omega^{(k)} = \hat{C}$, the Poincaré dual of the **homotopy defect's** location
- \mathcal{S}_π : **topological defects** generating $U(1)^{(D-k-1)}$ symmetries:

Gaiotto, Kapustin, Seiberg Willet (2015)

Grozdanov, Poovuttikul (2018)

Delacrétaz, Hofman, Mathys (2020)

Armas, Jain (2020)

Brauner (2021)

$$T^{(\alpha)}(\Sigma_k) = \exp(i\alpha Q(\Sigma_k))$$

EMERGENT SYMMETRIES

In generic **UV** models, homotopy defects are dynamical

- High energy processes cut open homotopy defects
- \mathcal{S}_π is not a **symmetry** in the **UV**

In the **IR**, homotopy defects are not dynamical

- \mathcal{S}_π is a **symmetry** in the **IR**

Generic ordered phases have an **emergent \mathcal{S}_π symmetry**

- We will always implicitly refer to \mathcal{S}_π at the lowest energy scale (the **deep IR**)

GENERALIZED SYMMETRIES IN PRACTICE

\mathcal{S}_{UV} includes ordinary/no symmetries, but $\mathcal{S}_{\text{mid-IR}}$ and \mathcal{S}_{IR} can include **emergent generalized symmetries**

- Emergent higher-form symmetries are exact symmetries, not approximate symmetries *Iqbal, McGreevy (2022)* *SP, Wen (2023)*
McGreevy (2022) *Cherman, Jacobson (2023)*
Cheng, Seiberg (2023)
- The generalized Landau paradigm is really a classification scheme about **emergent generalized symmetries**

THE SYMMETRY \mathcal{S}_π

What is this **generalized symmetry**?

- \mathcal{S}_π = magnetic symmetry of $\mathbb{G}_\pi^{(D-1)}$ higher gauge theory
- Finite **homotopy defect** types: $\mathcal{S}_\pi = (D-1)\text{-Rep}(\mathbb{G}_\pi^{(D-1)})$

Examples with $G = SO(3)$:

D	SSB Pattern	\mathcal{S}_π
3	$SO(3) \xrightarrow{\text{ssb}} 1$	$\mathbb{Z}_2^{(1)}$ ($\mathcal{S}_\pi = 2\text{-Rep}(\mathbb{Z}_2)$)
3	$SO(3) \xrightarrow{\text{ssb}} \mathbb{Z}_2 \times \mathbb{Z}_2$	$\mathcal{S}_\pi = 2\text{-Rep}(Q_8)$
4	$SO(3) \xrightarrow{\text{ssb}} SO(2)$	$0 \rightarrow \mathbb{Z}^{(2)} \rightarrow \mathbb{G}_\pi^{(3)} \rightarrow \mathbb{Z}^{(1)} \rightarrow 0$

ABELIAN HOMOTOPY DEFECTS

Consider general abelian homotopy defects

- Defects of different dimension are independent from one another
- Trivial $\alpha_k : \pi_1(\mathcal{M}) \rightarrow \text{Aut}(\pi_k(\mathcal{M})) \implies$ classified by $\pi_k(\mathcal{M})$.

Each $\pi_k(\mathcal{M})$ describes symmetry charges of a $(D - k - 1)$ -form symmetry.

- $(D - k - 1)$ -form symmetry group is the Pontryagin dual of $\pi_k(\mathcal{M})$

$$G^{(D-k-1)} = \text{Hom}(\pi_k(\mathcal{M}), U(1))$$

CODIMENSION 2 HOMOTOPY DEFECTS

Since we only care about $\pi_1(\mathcal{M})$, let's truncate \mathcal{M} to $\mathcal{M}_{\tau \leq 1}$:

$$\pi_k(\mathcal{M}_{\tau \leq 1}) = \begin{cases} \pi_k(\mathcal{M}) & k = 1 \\ 0 & \text{else} \end{cases}$$

$$\mathcal{M}_{\tau \leq 1} = B\pi_1(\mathcal{M})$$

\mathcal{S}_π from codimension 2 homotopy defects of \mathcal{M} is the same as \mathcal{S}_π from $\mathcal{M}_{\tau \leq 1}$

- These homotopy defects are $\pi_1(\mathcal{M})$ magnetic defects
- \mathcal{S}_π = the magnetic symmetry of $\pi_1(\mathcal{M})$ gauge theory
- Finite $\pi_1(\mathcal{M})$: $\mathcal{S}_\pi = (D - 1)\text{-Rep}(\pi_1(\mathcal{M}))$

GENERAL CONNECTED \mathcal{M}

Since $\pi_k(\mathcal{M})$ homotopy defects for $k > D - 1$ are absent in D dimensions, we truncate \mathcal{M} to $\mathcal{M}_{\tau \leq D-1}$:

$$\pi_k(\mathcal{M}_{\tau \leq n}) = \begin{cases} \pi_k(\mathcal{M}) & 1 \leq k \leq n \\ 0 & \text{else} \end{cases}$$

\mathcal{S}_π from \mathcal{M} is the same as \mathcal{S}_π from $\mathcal{M}_{\tau \leq D-1}$

- $\mathcal{M}_{\tau \leq n}$ is called the n th Postnikov stage of \mathcal{M}
- Model connected homotopy n -types.

GENERAL CONNECTED \mathcal{M}

Postnikov stages obey the fibrations ($2 \leq n \leq D - 1$)

$$B^n \pi_n(\mathcal{M}) \rightarrow \mathcal{M}_{\tau \leq n} \rightarrow \mathcal{M}_{\tau \leq n-1}$$

Classified by the twisted $(n + 1)$ -cocycle [Baez, Shulman (2009)]

$$[\beta^{n+1}] \in H_{\alpha_n}^{n+1}(\mathcal{M}_{\tau \leq n-1}, \pi_n(\mathcal{M})) \quad \alpha_n : \pi_1(\mathcal{M}) \rightarrow \text{Aut}(\pi_n(\mathcal{M}))$$

► $\mathcal{M}_{\tau \leq n}$ is the classifying space of an n -group: $\mathcal{M}_{\tau \leq n} = B\mathbb{G}_\pi^{(n)}$,

$$\mathbb{G}_\pi^{(n)} = (\pi_1(\mathcal{M}) ; \pi_2(\mathcal{M}), \alpha_2, \beta^3 ; \cdots ; \pi_n(\mathcal{M}), \alpha_n, \beta^{n+1})$$

► **Homotopy defects** are $\mathbb{G}_\pi^{(D-1)}$ magnetic defects

► \mathcal{S}_π = **magnetic symmetry** of $\mathbb{G}_\pi^{(D-1)}$ higher gauge theory

► For finite $\mathbb{G}_\pi^{(D-1)}$, it is $\mathcal{S}_\pi = (D - 1)\text{-Rep}(\mathbb{G}_\pi^{(D-1)})$

CHECK IN

In the deep IR, homotopy defects carry symmetry charge of an emergent generalized symmetry \mathcal{S}_π

- \mathcal{S}_π = magnetic symmetry of $\mathbb{G}_\pi^{(D-1)}$ higher gauge theory
- \mathcal{S}_π includes invertible and non-invertible, 0-form and higher-form symmetries.

What are some physical applications of \mathcal{S}_π ?

1. Spontaneous symmetry breaking (*we'll discuss here*)
2. Mixed 't Hooft anomaly with G (*we won't discuss here*)

SPONTANEOUSLY BREAKING \mathcal{S}_π

\mathcal{S}_π is not spontaneously broken in the ordered phase

- If it were, ordered phases would have GSD dependent on space's topology and exotic gapless modes
- Homotopy defects are gapped extended objects in the spectrum and are confined in the IR (*i.e.*, *area law*)

\mathcal{S}_π can spontaneously break, driving a transition out of the ordered phase

- Typically leads to an exotic phase of matter
- Homotopy defects will deconfine (*i.e.*, *perimeter law*)

SPONTANEOUSLY BREAKING \mathcal{S}_π

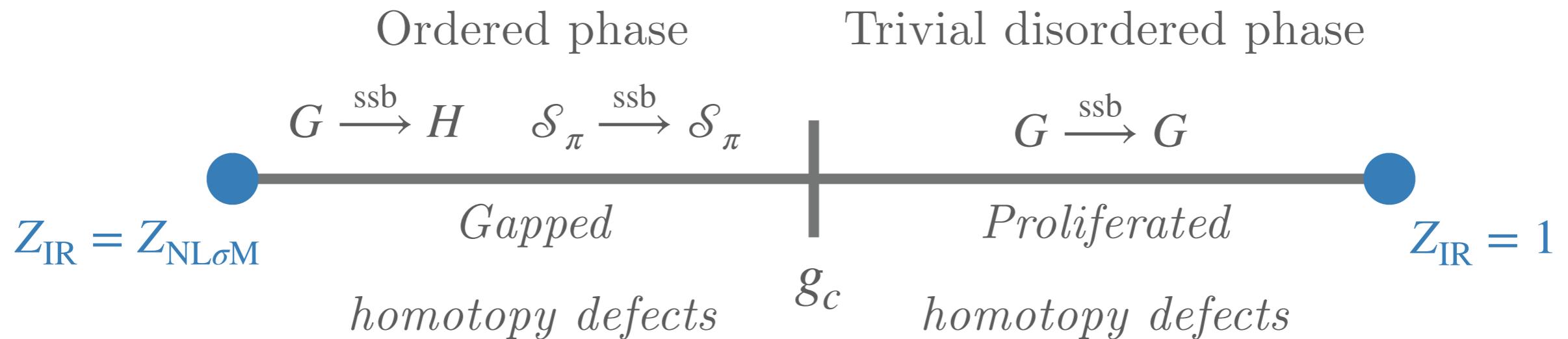
What happens to the microscopic G symmetry when spontaneously breaking \mathcal{S}_π ?

A physical argument

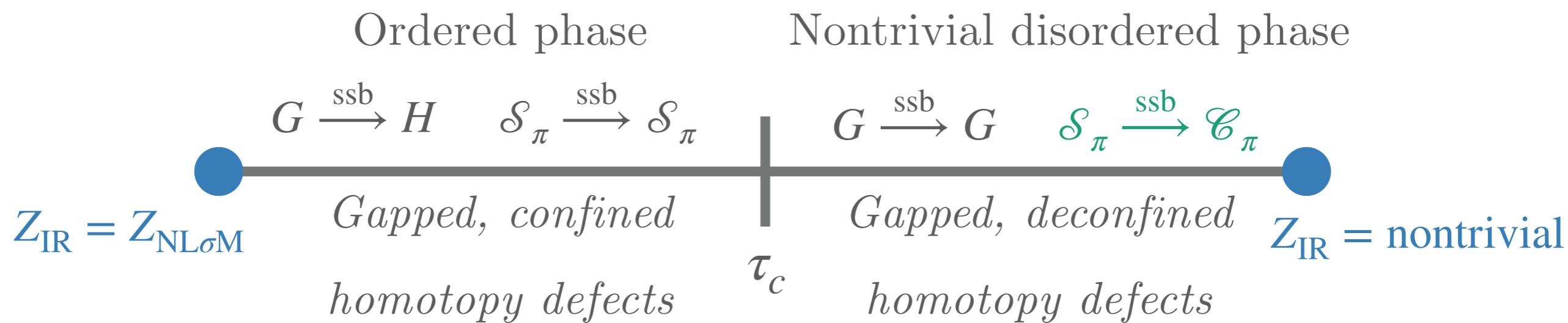
- Ordered vacua ($G \xrightarrow{\text{ssb}} H$) want to confine homotopy defects
- \mathcal{S}_π SSB vacua have a \mathcal{S}_π symmetry charge condensate that wants to deconfine homotopy defects
- The latter contradicts the former, so spontaneously breaking \mathcal{S}_π must restore G

TWO TYPES OF DISORDERED PHASES

Without **defect** suppression:



With perfect **defect** suppression:



THE POWER OF SYMMETRY

\mathcal{S}_π is a non-perturbative tool to identify **exotic phases** neighboring **ordered phases**

D	Ordered phase $G \xrightarrow{\text{ssb}} H$	Nontrivial disordered phase $\mathcal{S}_\pi \xrightarrow{\text{ssb}} \mathcal{C}_\pi$
4	$U(1) \xrightarrow{\text{ssb}} 1$	none
4	$U(1) \times U(1) \xrightarrow{\text{ssb}} 1$	$U(1)^{(1)} \xrightarrow{\text{ssb}} 1$
3	$SO(3) \xrightarrow{\text{ssb}} 1$	$\mathbb{Z}_2^{(1)} \xrightarrow{\text{ssb}} 1$
3	$SO(3) \xrightarrow{\text{ssb}} \mathbb{Z}_2 \times \mathbb{Z}_2$	$\text{Rep}(Q_8)^{(1)} \xrightarrow{\text{ssb}} 1$

- For finite $\mathbb{G}_\pi^{(D-1)}$: Nontrivial disordered phase is the deconfined phase of untwisted $\mathbb{G}_\pi^{(D-1)}$ higher gauge theory

FUN WITH $G = SO(3)$: PART I

Consider SSB pattern $SO(3) \xrightarrow{\text{ssb}} H$ with finite H in $D = 3$

$$\mathcal{M} = SO(3)/H$$

$$\pi_0(\mathcal{M}) = 0 \quad \pi_1(\mathcal{M}) = \tilde{H} \quad \pi_2(\mathcal{M}) = 0$$

where \tilde{H} is the cover of H that lifts it to a subgroup of $SU(2)$.

- e.g., $H = \mathbb{Z}_N = \tilde{H}$ and $H = \mathbb{Z}_2 \times \mathbb{Z}_2 \implies \tilde{H} = Q_8$
- 1D **homotopy defects** classified by conjugacy classes $\text{Cl}(\tilde{H})$
- **Emergent symmetry** $\mathcal{S}_\pi = \text{2-Rep}(\tilde{H})$

Let's build a Euclidean lattice model with the \mathcal{S}_π SSB phase

FUN WITH $G = SO(3)$: PART I

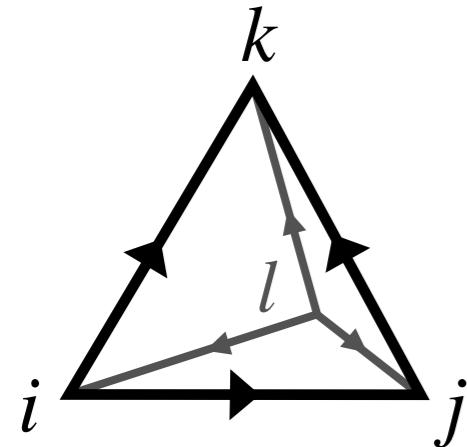
Consider the **order parameter** presentation

- On lattice sites i , $\tilde{G} = SU(2)$ rotors $z_i \in \mathbb{C}^2$ with $z_i^\dagger z_i = 1$. $SO(3)$ realized as $SU(2)$ transforming z_i in \square of $SU(2)$
- On lattice edges (ij) , \tilde{H} gauge fields a_{ij} in \square of $SU(2)$ restricted to \tilde{H} .

Why?

- Gauge redundancy $z_i \sim \tilde{h}_i z_i$, $a_{ij} \sim \tilde{h}_i a_{ij} \tilde{h}_j^{-1}$ restricts physical z_i values in $SU(2)/\tilde{H} = SO(3)/H \equiv \mathcal{M}$
- 1D **homotopy defects** realized as \tilde{H} gauge fluxes

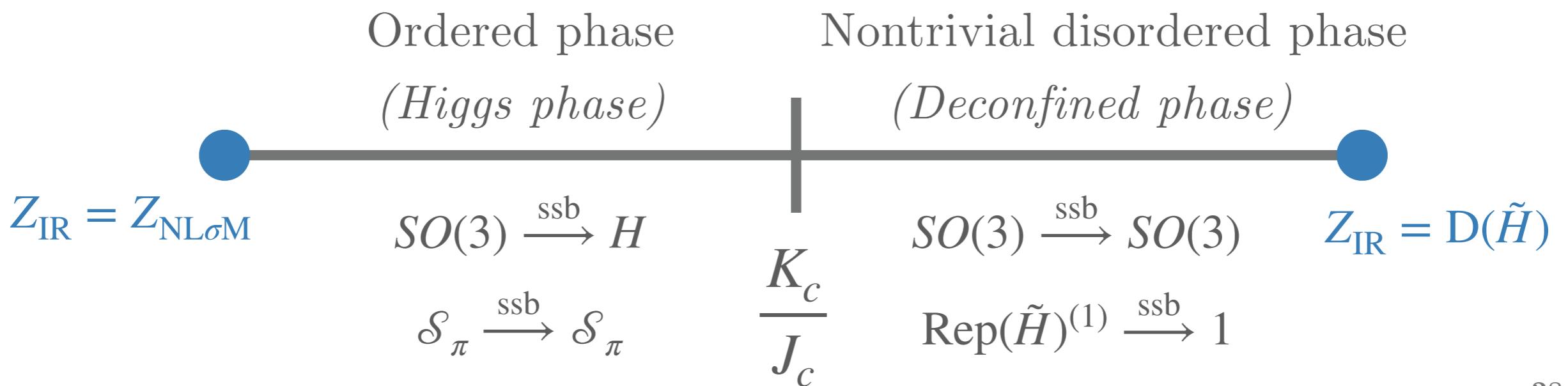
FUN WITH $G = SO(3)$: PART I



$$S = -J \sum_{(ij)} z_i^\dagger a_{ij} z_j + K \sum_{(ijk)} \text{Tr} [(\delta a)_{ijk}]$$

$$(\delta a)_{ijk} = a_{ij} a_{jk} a_{ik}^{-1}$$

- J term wants z_i (gauge charges) **to condense**
- K term penalizes $\pi_1(\mathcal{M})$ homotopy defects (\tilde{H} gauge fluxes)



FUN WITH $G = SO(3)$: PART II

Consider SSB pattern $SO(3) \xrightarrow{\text{ssb}} SO(2)$ [$\mathcal{M} = S^2$] in $D = 4$

$$\pi_0(S^2) = 0 \quad \pi_1(S^2) = 0 \quad \pi_2(S^2) = \mathbb{Z} \quad \pi_3(S^2) = \mathbb{Z}$$

- Because $\pi_1(S^2)$ is trivial

$$\mathbb{G}_\pi^{(3)} = (\pi_2(S^2) ; \pi_3(S^2), \beta^4) \quad [\beta^4] \in H^4(B^2\mathbb{Z}, \mathbb{Z})$$

- Consider 2 & 3 cochains $x^{(2)}$ & $x^{(3)}$ on $B\mathbb{G}_\pi^{(3)} = S^2_{\tau \leq 3}$

$$dx^{(2)} = 0 \quad dx^{(3)} = x^{(2)} \cup x^{(2)} \equiv \beta^4(x^{(2)})$$

\mathcal{S}_π = magnetic symmetry of $\mathbb{G}_\pi^{(3)}$ gauge theory

- Non-invertible symmetry since $\mathbb{G}_\pi^{(3)}$ does not have a Pontryagin dual 3-group [Chen, Tanizaki (2023)]

FUN WITH $G = SO(3)$: PART II

To construct **effective theory** for the nontrivial disordered phase, consider the \mathbb{CP}^1 presentation of the S^2 NL σ M

- $U(1)$ 1-form gauge field $A^{(1)}$

$$\int_{S^2} \frac{1}{2\pi} dA^{(1)} \in \pi_2(S^2)$$

$$\int_{S^3} \frac{1}{4\pi^2} A^{(1)} \wedge dA^{(1)} \in \pi_3(S^2)$$

Motivates us to introduce the $U(1)$ 2-form gauge field $B^{(2)}$ and gauge invariant **field strengths**

$$F^{(2)} = dA^{(1)}$$

$$H^{(3)} = \frac{1}{2\pi} A^{(1)} \wedge dA^{(1)} + dB^{(2)}$$

$$A^{(1)} \sim A^{(1)} + df_1^{(0)}$$

$$B^{(2)} \sim B^{(2)} + df_2^{(1)} - \frac{1}{2\pi} f_1^{(0)} dA^{(1)}$$

FUN WITH $G = SO(3)$: PART II

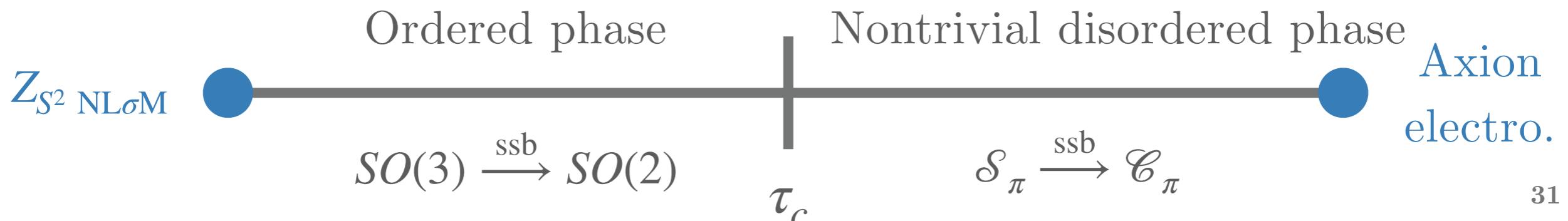
Effective field theory of the **nontrivial disordered phase**

$$S_{\text{IR}} = \int_{M_4} \frac{1}{2e^2} F^{(2)} \wedge \star F^{(2)} + \frac{1}{4\pi v^2} H^{(3)} \wedge \star H^{(3)}$$

Dualizing $B^{(2)}$ to the compact boson $\phi^{(0)}$

$$S_{\text{IR}} = \int_{M_4} \frac{1}{2e^2} F^{(2)} \wedge \star F^{(2)} + \frac{v^2}{2} d\phi^{(0)} \wedge \star d\phi^{(0)} + \frac{1}{4\pi^2} \phi^{(0)} F^{(2)} \wedge F^{(2)}$$

► **Massless axion electrodynamics** enriched by $SO(3)$!



SUMMARY

SP, arXiv: 2308.05730

SP, C Zhu, A Beaudry, and X-G Wen, *in preparation*

Generalized symmetries emerge in ordered phases

- Symmetry charge carried by homotopy defects
- Symmetry defects described by $(D - 1)$ -representations of $\mathbb{G}_\pi^{(D-1)} = (\pi_1(\mathcal{M}) ; \pi_2(\mathcal{M}), \alpha_2, \beta^3 ; \dots ; \pi_{D-1}(\mathcal{M}), \alpha_{D-1}, \beta^D)$

Their spontaneous breaking gives rise to nontrivial disordered phases

- \mathcal{S}_π is a non-perturbative tool to identify exotic phases neighboring ordered phases