THE EMERGENT FINE STRUCTURE
CONSTANT IN QUANTUM SPIN ICE
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QUANTUM CONDENSED MATTER PHYSICS

>» Known UV Short Distances (High Energy)

degrees of

freedom

» Many-body
problem complex

and intractable » IR degrees of

freedom emerge

» Etfective
description of

many-body

Long Distances (Low Energy) problem
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EMERGENCE

Long Distances (Low Energy)
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EMERGENCE
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YouTube: “Richard Feynman FRS.mov,” by Cheryl Field
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EMERGENCE

YouTube: “Richard Feynman FRS.mov,” by Cheryl Field

@)mergem Quantum Electrodynamics???]
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RARE-EARTH PYROCHLORE MAGNETS

S

Magnetic rare-earth ion Non-magnetic
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Hallas, Alannah M., Jonathan Gaudet, and Bruce D. Gaulin. Annual Review of Condensed Matter Physics 9 (2018): 105-124.



SPIN ICE MATERIALS

Classical spin ice Candidate quantum spin ice
Ho,T1,0; Yb,Ti,O, Pr,Sn,0, Pr,Hf,0,
Dy, Ti,0, Tb,T1,0; Pr,Zr,0,
» Well established » Active area of experimental
» Order at low T research
» No long-range order even at
T=0

Gardner, Jason S., Michel JP Gingras, and John E. Greedan. Reviews of Modern Physics 82.1 (2010): 53.
Hallas, Alannah M., Jonathan Gaudet, and Bruce D. Gaulin. Annual Review of Condensed Matter Physics 9 (2018): 105-124. 6/28
Rau, Jeffrey G., and Michel JP Gingras. Annual Review of Condensed Matter Physics (2019).



CLASSICAL SPIN ICE

HCSI — Jzz Z SZZS]Z
)

» (i,j): Nearest neighbors

> J..>0
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Anderson, Philip W. Physical Review 102.4 (1956): 1008. /



CLASSICAL GROUND STATE AND EXCITATIONS

HCSI — Jzz Z SZZ‘S;Z
(i,])

Ground state

Local 2-in 2-out constraint: ice rule
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CLASSICAL GROUND STATE AND EXCITATIONS

Ground state Excitation

Local 2-in 2-out constraint: ice rule 2J.. energy gap
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AN EMERGENT GAUGE STRUCTURE

Ground state Excitation

Local constraint: 2-in 2-out 2J,. energy gap

div§ =0 div$c <0

9/28
Castelnovo, Claudio, Roderich Moessner, and Shivaji L. Sondhi. Nature 451.7174 (2008): 42-45. /



AN EMERGENT GAUGE STRUCTURE

Ground state Excitation

Local constraint: 2-in 2-out 2J,. energy gap

div§ =0 div$c <0

[Emergent Gauss’s Law: div, §* = qj

9/28
Castelnovo, Claudio, Roderich Moessner, and Shivaji L. Sondhi. Nature 451.7174 (2008): 42-45. /



EMERGENT ELECTRODYNAMICS
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EMERGENT ELECTRODYNAMICS
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GEOMETRICAL FRUSTRATION

Residual Entropy ~ N In3/2

11/28
Pauling, Linus. Journal of the American Chemical Society 57.12 (1935): 2680-2684. /



QUANTUM SPIN ICE: CANONICAL MODEL

> Define operator: Wy, = S5 81587 .57 457 sSh6

Ring
< >

Exchange

Agsi=1. 3, 88— g Y (W, +W))
(i) 2

> J.>g>0
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Hermele, Michael, Matthew PA Fisher, and Leon Balents. Physical Review B 69.6 (2004): 064404. /



EMERGENT QED IN QUANTUM SPIN ICE

Short Distances (High Energy)

(i.)) h

A 3 €QSI | 2 1 a 2
HMaxwell = |d’x E(x) + B(x)
2 2uqs
Electric
Charge
A,
) Magnetic
€3 .\lnn()[)nl(‘
Am
Long Distances (Low Energy)
Hermele, Michael, Matthew PA Fisher, and Leon Balents. Physical Review B 69.6 (2004): 064404. PO
Banerjee, Argha, et al. Physical review letters 100.4 (2008): 047208. 0 f T
Shannon, Nic, et al. Physical review letters 108.6 (2012): 067204. 0 cutoff
Kato, Yasuyuki, and Shigeki Onoda. Physical review letters 115.7 (2015): 077202. |k|
Huang, Chun-Jiong, et al. Physical review letters 120.16 (2018): 167202. 13/28

Szabo, Attila, and Claudio Castelnovo. Physical Review B 100.1 (2019): 014417.



EMERGENT FINE STRUCTURE CONSTANT

Quest: Use exact diagonalization (ED) techniques on

Agsi =1 Y, 88— 3 (W, + W)
(i i

to find the low-energy spectra and measure:
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EMERGENT FINE STRUCTURE CONSTANT

Quest: Use exact diagonalization (ED) techniques on
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to find the low-energy spectra and measure:
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EMERGENT FINE STRUCTURE CONSTANT

Quest: Use exact diagonalization (ED) techniques on

h

\ /

)
€QsI

to find the low-energy spectra and measure:

os1 =

47Z'€QSIhCQSI
- 14/28



NUMERICAL PLAN OF ATTACK

Perform ED on systems with up to 96 spins

» Project to constrained Hilbert space satisfying ice rules

» Periodic Boundary Conditions allows additional projections

A) Electric topological sectors

Before Projections  After Projections

B) Momentum sectors dm# 2%~ 8x10% 227 5 7% 106

» Vary shape of periodic unit
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ELECTRIC TOPOLOGICAL SECTORS
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ELECTRIC TOPOLOGICAL SECTORS
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Py i ¥

ek
=z
\
)
e



MAXWELL ENERGY DENSITY
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ELECTRIC FIELD CALCULATION

» (Gauss’s Law:

E - (Wi Xwy) = $seqst/ €qsi

P W1+ Wy + P3w3 €gsi
E-(Wyxw3) = pregg/eqs) — mmmlpp  E =1 T2727 7573 0

vV €
E - (w3 xXwy) = hreqsi/€qs Q51
» () Matrix
a’ ) O¢ €qsi
Q =— W1 W W3 q E = >
Lo a? eqs
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MAXWELL ENERGY DENSITY
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MAXWELL ENERGY DENSITY
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FITTING egg/eqgs;

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

= Maxwell Theory Fit

@ Fxact Diagonalization Data

6 ] 10
Q|

|\
B -

0

2
€QSI

= (0.50 £ 0.07)ag
€QSI
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GAUSSIAN PHOTON DISPERSION

» otart from Gaussian Theory: H = Z <rr> Z (V X A, )

» Write:

— L ’ —ik-(r+en/2) ik-(r+en/2) " §
e U % 20,(k) G onak)dq (k) + € s 00ajho)

k
E,, - ’_Z a)( ) [ ~ik(rt e g (g (k) — ek (r+el2) g n(k)a;(k)]

» £ is spin-1 polarization tensor
» a (k) destroys photon of momentum k

» o 1s the photon dispersion
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QSI GAUSSIAN PHOTON DISPERSION

0 /2 r 37/2 o
kla
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Benton, Owen, Olga Sikora, and Nic Shannon. Physical Review B 86.7 (2012): 075154.



FITTING cog

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

6) 5 -
2. O Ganssian Lattice Gange Theory Fit
® Fxacr Diagonalization Data
2.0
o 1.5
%‘
1.0

cost = (0.51 £0.06)ag/n
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EMERGENT FINE STRUCTURE CONSTANT

2
€QsI

AQs1 =

4ﬂ€QSIhCQSI
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EMERGENT FINE STRUCTURE CONSTANT
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EMERGENT FINE STRUCTURE CONSTANT
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QSI BALLPARK NUMBERS

> Lattice spacing: a ~ 10 A

» Ring exchange energy: g ~ 10 ueV

Parameters QSI QED
c 10 m /s 3% 10% m/s
e*/e 1073 J m 29%x 1077 J m
a 1/10 1/137

Gardner, Jason S., Michel JP Gingras, and John E. Greedan. Reviews of Modern Physics 82.1 (2010): 53.

25/28
Savary, Lucile, and Leon Balents. Physical review letters 108.3 (2012): 037202. /



PERTURBING THE MODEL
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PERTURBING THE MODEL

A - AA A A_*_ A
(L.} h
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PERTURBING THE MODEL

4 )
» Counts flippable hexagons

» QED phase: =05 <Su<1

\) Rokhsar-Kivelson point: y =1
Y

26/28
Shannon, Nic, et al. Physical review letters 108.6 (2012): 067204.



PERTURBING THE MODEL

r N\ ™
» (Counts flippable hexagons » (({i,j))): Spins across hexagons
» QED phase: =055 u<1 » Realistic two body term

\) Rokhsar-Kivelson point: y =1 \> QED phase: —02 S <1 )

Y
26 /28

Shannon, Nic, et al. Physical review letters 108.6 (2012): 067204.
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TUNING aqg;

® ¢=0ED
= Fit: 0.078/T — /1
& ,=0ED |
0.2017 Fit: 0.13(0.564C) %/
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TUNING aqg;

® ¢=0ED
= Fit: 0.078/T —
! = (0 ED |
0.20 - wes - Fit: 0.13(0.564-C) % /‘

X QSI
\

Cardy, John L. Nuclear Physics B 170.3 (1980): 369-387.
Cella, G., et al. Physical Review D 56.7 (1997): 3896. 27/28
Luck, J. M. Nuclear Physics B 210.1 (1982): 111-124.



Long Distance  _

<2 Magnetic
. \[_5/ .\[()]l()l)()](‘
Low Temperature A,

0 k('u't()ff
k|

Tunable

28,28



THANK YOU! QUESTIONS?

arX1v:2009.04499

Roderich Moessner Chris Laumann Sid Morampudi

Mazx Planck Institute for the Boston University MIT
Physics of Complex Systems



QUANTUM SPIN ICE

» Most general quantum Hamiltonian:
H= Y 1S5~ 1 (157 +57S7)
(i.])
.. [yl]SJ“SJ“ +7ESST ]

+J, S | ((z;] : (;g) +i<—>j>-_

» Experiments on Yb,Ti,0, found that in meV:
J..=0.17=%x0.04, J,.=0.05%0.01

Joy =0.05+0.01 J,.=-0.14%0.01




EXPERIMENTAL CONSEQUENCES

1. Cherenkov Radiation

» Theoretical study whose results where in terms of the fine

structure constant

» Since the speed of light is being tuned too, the threshold for
Cherenkov radiation is also moved

2. Dynamical Structure Factor

» Shows sharp lines from excitonic bound states and a

continuum.

» We now have all the information to know the spacing
between bound states in numerics and neutron scattering

experiment.
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Morampudi, Siddhardh C., Frank Wilczek, and Chris R. Laumann. Physical Review Letters 124.9 (2020): 097204.



XXZ MODEL TO QSI

» Setting J,., = J,, =0, XXZ model:

Q< +Q—
XSS+ LY <Si S +h.c. )
» Study quantum fluctuations within spin ice manifold (Set spinon
gap to infinity)

» For J > J,,, third order perturbation

H

] —
A “H.| P

"'H * H, %

3
+

Hy =55 Z <S+ SiaStySiStsSis +h-c. )

> = Z( SiaStSiaSitsSis +hc. )
h



EMERGENT COMPACT QED

» Introduce quantum rotor variables: S = il

» Introduce oriented link variables
> A =* ¢,

> Hamiltonian becomes H = — 2g 2 cos(curlA)
h

» (Consider Hamiltonian
U 2
> H=— Y E?— K ) cos(curlA)
r h

» When U > K, gives same low-energy physics as above.



EMERGENT COMPACT QED: COMMENTS

U
, H= 5 ; E? - K; cos(curlA) is a compact U(1) LGT.

» H is invariant under gauge transtormation A; - A; + g — g

» (Canonically conjugate [A,E] =i
» magnetic monopoles

» Because E; = = 1/2, LGT is frustrated an non-trivial in U > K

limit



RECALL FINE STRUCTURE CONSTANT

1 , -
> £ =- ZFMVFW — 6ﬂ¢76”q§ —m?pTp — 21\/7tangaﬂ PAH — 47taAﬂA”nggb

» Scalar QED Lagrangian

» a gives coupling strength between photon field and scalar
boson field.

» Electron-positron to electron positron scatter leading order

term is proportional to a

» In the QED of our universe, a = 1/137



FULL DISPERSION

» Effective theory near the RK point, with U =1 — u

U » K » W 2

HRK—EZEU+?Z(V;Z><A) +—- ), (VX E)
(i) h h

» Diagonalize to find the dispersion

w1k) = 21/ LK) + V()

(0 =3 cos (4 con () — cos (2 ) cos (42) — cos (12 cos (42

c=+/UKa and V=UW



