
UV/IR MIXING IN THE 
￼  RANK-2 TORIC CODE ℤN

Sal Pace (MIT)

BU CMT seminar arXiv:2204.07111

UV

IR
UV/IR

￼1

mailto:sdpace4@gmail.com


WORK IN COLLABORATION WITH
Xiao-Gang Wen (MIT)

arXiv:2204.07111 2



WILSON’S PERSPECTIVE

Long Distances (IR)

Short Distances (UV)

The IR decouples from the UV

e.g., graphene

ℒ = ψ̄ i∂μγμ ψ

H = ∑
⟨i,j⟩

tij c†
i cj

UV

IR
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WILSON’S PROPAGANDA?

The Villain: UV/IR MixingOur Hero: Wilson

UV/IR Mixing: The IR depends on the UV
➤ Long-distance sensitivity to short-distance details

4

➤ Mixing between small momenta and low energy 
with large momenta

➤ Cannot even define the IR theory without referring 
to the UV theory



WILSON’S PROPAGANDA?

The Villain: UV/IR MixingOur Hero: Wilson

UV/IR Mixing: The IR depends on the UV
➤ Long-distance sensitivity to short-distance details

4

In high-energy: 

➤ Noncommutative field theory 

➤ Quantum Gravity

In quantum matter: 

➤ Fracton topological order 

➤ Exciton Bose liquid 

➤ Marginal Fermi liquidsMinwalla, Van Raamsdonk, & Seiberg, JHEP 2000.02 (2000): 020 
Douglas & Nekrasov, Rev. Mod. Phys. 73.4 (2001): 977.      
Grosse, Steinacker, & Wohlgenannt. JHEP 2008.04 (2008): 023                                        
Berglund et al. arXiv:2202.06890 (2022).

Gorantla et al. PRB 104.23 (2021): 235116.                           
You & Moessner. arXiv:2106.07664 (2021).                         
Lake, PRB 105.7 (2022): 075115.                                       
Ye, Lee, & Zou, PRL 128.10 (2022): 106402.   



DESTINATION FOR THIS TALK
Befriend UV/IR mixing and conceptually bridge 
some fracton orders and some topological orders
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THE AGENDA
1. Review Topological and Fracton Order 

2. Position-Dependent Excitations 

3.  Rank-2 Toric Code (R2TC) 

4. UV/IR mixing in R2TC from the UV 

5. UV/IR mixing in R2TC from the IR

ℤN
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TOPOLOGICAL ORDER

Topological Degeneracy: number of ground 
states depends on the topology of spacetime

Wen, Int. J. Mod. Phys. B 4.02 (1990)                                                                                
Kitaev & Preskill, PRL 96.11 (2006): 110404.                                       
Levin & Wen, PRL 96.11 (2006): 110405.  

Topological orders occur in gapped, long-range entangled 
quantum phases. Two key characteristics in our story:

Topological Excitations: particles that (1) 
cannot be created alone and (2) can be anyons

The non-local order of a discrete higher-symmetry SSB phase?

Chen ,Gu, & Wen, PRB 82.15 (2010): 155138.                          
Wen, Science 363.6429 (2019)                                  
McGreevy, arXiv:2204.03045 (2022).
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TOPOLOGICAL ORDER

IR: Topological 
Quantum Field Theories

UV: Lattice Models
e.g., 2+1D  topological orderℤ2

S[a, b] =
1
π ∫X3

a ∧ db

H = − ∑
s

∏
e∈δs

σz
e − ∑

p
∏
e∈∂p

σx
e

UV: toric code

IR: mutual Chern-Simons theory

Our Hero: Wilson
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TOPOLOGICAL ORDER  SYMMETRY+

The interplay between topological order and symmetry 
leads to symmetry-enriched topological (SET) order

Wen, PRB 65.16 (2002): 165113.                                      
Kou & Wen, PRB 80.22 (2009): 224406.                           
Essin & Hermele, PRB 87.10 (2013): 104406.                  
Mesaros & Ran, PRB 87.15 (2013): 155115.

Conventional SET: Excitations carry fractional quantum 
numbers of the symmetry (symmetry fractionalization)
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➤ e.g.,  FQH stateν =
1
3 Electron

Anyons



TOPOLOGICAL ORDER  SYMMETRY+

10

Kou, Levin, & Wen, PRB 78.15 (2008): 155134.                       
Lu & Vishwanath, PRB 93.15 (2016): 155121.                     
Tarantino, Lindner, & Fidkowski, New J. Phys. 18.3 (2016): 035006. 
Barkeshli et al., PRB 100.11 (2019): 115147.

➤ Spoiler alert: may involve UV/IR mixing

Unconventional SET: Excitations also change type under 
symmetry transformation

The interplay between topological order and symmetry 
leads to symmetry-enriched topological (SET) order

➤ Two excitations are of the same type if they can be 
transformed into each other using local operators



FRACTON ORDER

Subextensive Topological Degeneracy: number of grounds 
states depends on the topology and geometry of lattice

Fracton topological orders occur in gapped, long-range entangled 
3+1D quantum phases. Two key characteristics in our story:

Subdimensional Topological Excitations: particles (1) 
cannot be created alone and (2) cannot move alone

Chamon, PRL 94.4 (2005): 040402.                                                              
Haah, PRA 83.4 (2011): 042330.                                                                            
Yoshida, PRB 88.12 (2013): 125122.                                                   

Fractons: completely immobile 
Lineons: can move along lines 
Planons: can move within planes

Vijay, Haah, & Fu. PRB 92.23 (2015): 235136.                                         
Nandkishore & Hermele, Annu. Rev. Condens. Matter Phys. 10 (2019): 295-313.                                  
Pretko, Chen, & You, Int. J. Mod. Phys. A 35.06 (2020): 2030003.
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FRACTON ORDER

Slagle & Kim, PRB 96.19 (2017): 195139.                        
Radicevic, arXiv:1910.06336 (2019).                                    
Slagle, Aasen, & Williamson, SciPost Physics 6.4 (2019): 043.                               
You et al., Phys. Rev. Res. 2.2 (2020): 023249.                 

The Villain: 
UV/IR Mixing

Rudelius, Seiberg, & Shao. PRB 103.19 (2021): 195113.         
Fontana, Gomes, & Chamon, SciPost Physics Core 4.2 (2021): 012. 
Gorantla et al., arXiv:2201.10589 (2022).
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IR: Topological 
Quantum Field Theories

UV: Lattice Models
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POSITION DEPENDENT EXCITATIONS

Unconventional SET orders:  for  
where  s.t.  (i.e., )

(Ti)n : a ↦ an ≠ a n < N
N < Li (Ti)N : a ↦ a aN = a

Position dependent excitations: excitations at 
different lattice sites are different types. 

➤ Excitations that change type under lattice 
translations

e.g., Wen’s Plaquette model:  and  but 
 and . (Also , )

Tx,y : e ↦ m Tx,y : m ↦ e

T2
x,y : e ↦ e T2

x,y : m ↦ m TxTy : e ↦ e TxTy : m ↦ m
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POSITION DEPENDENT EXCITATIONS

Position dependent excitations: excitations at 
different lattice sites are different types. 

➤ Excitations that change type under lattice 
translations

14

Fracton orders:  for all (Ti)n : a ↦ an ≠ a n < Li

Fractons: completely immobile so                        
Lineons: e.g., can move in  direction:  but                 
Planons: e.g., can move in  plane:  but 

i = x, y, z
z i = x, y Tz : ℓ ↦ ℓ
xy i = z Tx,y : p ↦ p



POSITION DEPENDENT EXCITATIONS

➤ Key point: all position dependent excitations have 
restricted mobility

All subdimensional particles are position dependent 
excitations, but not all position dependent 
excitations are subdimensional particles

15

Claim: position dependent excitations causes 
UV/IR mixing
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HIGGS AND TOPOLOGICAL ORDER

What about Higgs phase of symmetric 
rank-2 tensor  gauge theory?U(1)

➤ Higgs phase of vector  gauge theory where 
: exactly solvable point corresponds to the 

 toric code

U(1)
U(1) → ℤN

ℤN

17

The Higgs phases of  gauge theory can have 
topological order

U(1)

Fradkin & Shenker, PRD 19.12 (1979): 3682.                                                                                       



SYMMETRIC TENSOR GAUGE THEORY

Deconfined phase of symmetric tensor  gauge 
theories are gapless fracton phases.

U(1)

Gauge charges are fractons

18Pretko, PRB 95.11 (2017): 115139.

➤ Gapped subdimensional particles with gapless 
“photon” mode

Example: tensor gauge field  and electric field 
 in 2+1D with Gauss law 

Aij

Eij ρ = ∂i∂jEij

“Flux loops” are lineons



2+1D RANK-2 TORIC CODE

19

Square lattice with two  quantum rotors on each site 
and one  quantum rotors on each plaquette

ℤN

ℤN

Ma, Hermele, & Chen, PRB 98.3 (2018): 035111.                                         
Bulmash & Barkeshli, PRB 97.23 (2018): 235112.                                     Oh et al., PRB 105.4 (2022): 045128.

➤ Rank-2 Toric Code (R2TC): Exactly solvable point in 
the Higgs phase of symmetric rank-2 tensor  gauge 
theory

U(1)



2+1D RANK-2 TORIC CODE

Z1 Z2 Z3 X1 X2 X3

†
†

†
† †

†

G
†

†

†
†

F(y)
F(x)

19

Square lattice with two  quantum rotors on each site 
and one  quantum rotors on each plaquette

ℤN

ℤN

ZjXi = ωδi, jXiZj

 clock operators:ℤN

H = − ∑
x,y

(Gx,y + F(x)
x,y + F(y)

x,y + h.c.)

XN
i = ZN

i = 1

ω = exp[2πi/N]

Ma, Hermele, & Chen, PRB 98.3 (2018): 035111.                                         
Bulmash & Barkeshli, PRB 97.23 (2018): 235112.                                     Oh et al., PRB 105.4 (2022): 045128.



➤ The ground state  satisfies:|vac⟩

20

Exactly solvable because: [Gx,y, F(x)
x′￼,y′￼

] = [Gx,y, F(y)
x′￼,y′￼

] = 0

➤ A gapped excited states  satisfies:|ψ⟩

R2TC IS EXACTLY SOLVABLE
H = − ∑

x,y
(Gx,y + F(x)

x,y + F(y)
x,y + h.c.)

Gx,y |vac⟩ = |vac⟩ F(x)
x,y |vac⟩ = |vac⟩ F(y)

x,y |vac⟩ = |vac⟩

Gx,y |ψ⟩ = ω𝔢x,y |ψ⟩ F(x)
x,y |ψ⟩ = ω𝔪(x)

x,y |ψ⟩ F(y)
x,y |ψ⟩ = ω𝔪(y)

x,y |ψ⟩



EXCITATIONS IN THE R2TC

21

Three species of excitations: 

 charge: ℤN Gx,y |ψ⟩ = ω𝔢x,y |ψ⟩

 fluxes:  and ℤN F(x)
x,y |ψ⟩ = ω𝔪(x)

x,y |ψ⟩ F(y)
x,y |ψ⟩ = ω𝔪(y)

x,y |ψ⟩

ex,y

m(x)
x,y m(y)

x,y

(x, y)

(x, y) (x, y)



Z1 Z2 Z3 X1 X2 X3

GENERATING FUSION RULES

22

1 = ex−1,y ⊗ ēx,y ⊗ ēx,y ⊗ ex+1,y

Z1 Z2 Z3 X1 X2 X3

Z1 Z2 Z3 X1 X2 X3

1 = ex,y−1 ⊗ ēx,y ⊗ ēx,y ⊗ ex,y+1

Z1 Z2 Z3 X1 X2 X3

1 = ex,y ⊗ ēx+1,y ⊗ ex+1,y+1 ⊗ ēx,y+1



GENERATING FUSION RULES
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1 = m(y)
x,y−1 ⊗ m̄(y)

x,y

1 = m̄(x)
x,y ⊗ m̄(y)

x,y ⊗ m(x)
x,y+1 ⊗ m(y)

x+1,y

Z1 Z2 Z3 X1 X2 X3

Z1 Z2 Z3 X1 X2 X3

Z1 Z2 Z3 X1 X2 X3

Z1 Z2 Z3 X1 X2 X3

1 = m(x)
x−1,y ⊗ m̄(x)

x,y



EMERGENT CONSERVATION LAWS

24

Fusion rules
1 = m(x)

x−1,y ⊗ m̄(x)
x,y

1 = m(y)
x,y−1 ⊗ m̄(y)

x,y

1 = m̄(x)
x,y ⊗ m̄(y)

x,y ⊗ m(x)
x,y+1 ⊗ m(y)

x+1,y

1 = ex−1,y ⊗ ēx,y ⊗ ēx,y ⊗ ex+1,y

1 = ex,y−1 ⊗ ēx,y ⊗ ēx,y ⊗ ex,y+1

1 = ex,y ⊗ ēx+1,y ⊗ ex+1,y+1 ⊗ ēx,y+1

1 = (m(x)
x,y)⊗N

1 = (m(y)
x,y )⊗N

1 = (ex,y)⊗N

0 = 𝔪(x)
x−1,y − 𝔪(x)

x,y,

0 = 𝔪(y)
x,y−1 − 𝔪(y)

x,y,

0 = − 𝔪(x)
x,y − 𝔪(y)

x,y + 𝔪(x)
x,y+1 + 𝔪(y)

x+1,y,

0 = 𝔢x−1,y − 2𝔢x,y + 𝔢x+1,y

0 = 𝔢x,y−1 − 2𝔢x,y + 𝔢x,y+1

0 = 𝔢x,y − 𝔢x+1,y + 𝔢x+1,y+1 − 𝔢x,y+1

0 = N 𝔪(x)
x,y

0 = N 𝔪(y)
x,y

0 = N 𝔢x,y

conservation laws⟹
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The conservation laws make life simpler!



POSITION DEPENDENT EXCITATIONS

25

Carry position dependent charge/flux  are position 
dependent excitations

⟹

𝔪(x)
x,y = 𝔪x + y 𝔤 𝔪(y)

x,y = 𝔪y − x 𝔤 𝔢x,y = 𝔢 + x 𝔭x + y 𝔭y

➤ If i.e., :  can move from  to 𝔢x,y = 𝔢x′￼,y′￼
e (x, y) (x′￼, y′￼)

Conservation laws view: because charge is conserved 

Fusion rules view: because  a string operator∃

Basis fluxes:  

Basis charges: 

𝔪x = 𝔪(x)
0,0, 𝔪y = 𝔪(y)

0,0, 𝔤 = 𝔪(x)
0,1 − 𝔪(x)

0,0

𝔢 = 𝔢0,0, 𝔭x = 𝔢1,0 − 𝔢0,0, 𝔭y = 𝔢0,1 − 𝔢0,0



POSITION DEPENDENT EXCITATIONS
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Restricted Mobility

𝔪(x)
x,y = 𝔪(x)

x,y+N

𝔪(x)
x,y = 𝔪(x)

x′￼,y

𝔪(y)
x,y = 𝔪(y)

x,y′￼

𝔪(y)
x,y = 𝔪(y)

x+N,y

𝔢x,y = 𝔢x,y+N

𝔢x,y = 𝔢x+N,y

➤  hops by 1 in longitudinal direction, by  in 
transverse direction  pseudo-lineon 

➤  hops by  in all directions  pseudo-fracton

m(i) N
→

e N →

𝔪(x)
x,y = 𝔪x + y 𝔤 𝔪(y)

x,y = 𝔪y − x 𝔤 𝔢x,y = 𝔢 + x 𝔭x + y 𝔭y

N 𝔪x = N 𝔪y = N 𝔤 = N 𝔢 = N 𝔭x = N 𝔭y = 0
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UV/IR MIXING

28

To see UV/IR mixing, need to consider an observable

GSD on torus = number of anyon types

General excitation carries:

ℓ = ℓ1𝔪x + ℓ2𝔪y + ℓ3𝔤 + ℓ4𝔢 + ℓ5𝔭x + ℓ6𝔭y

So GSD ? Where’s UV/IR mixing?= N6

➤ Topological degeneracy

Barkeshli et al, PRB 100.11 (2019): 115147.                                                                         
Ji & Wen. Phys. Rev. Res. 1.3 (2019): 033054.

➤                                                                         y



PERIODIC BOUNDARY CONDITIONS

29

This combined with the fact that these are  
charges/fluxes:

ℤN

Periodic boundary conditions give rise to global 
equivalence relations:

𝔪(x)
x,y = 𝔪(x)

x,y+Ly

𝔪(x)
x,y = 𝔪(x)

x+Lx,y

𝔪(y)
x,y = 𝔪(y)

x,y+Ly

𝔪(y)
x,y = 𝔪(y)

x+Lx,y

𝔢x,y = 𝔢x,y+Ly

𝔢x,y = 𝔢x+Lx,y

gcd(Lx, N) 𝔭x = 0 gcd(Ly, N) 𝔭y = 0

gcd(Lx, Ly, N) 𝔤 = 0



30

Without PBC: , , , , ,  are  fluxes/charges𝔪x 𝔪y 𝔤 𝔢 𝔭x 𝔭y ℤN

With PBC: , , and  still  fluxes/charges, but𝔪x 𝔪y 𝔢 ℤN

𝔪(y)
x,y = 𝔪(y)

x+gcd(Lx,Ly,N),y

𝔢x,y = 𝔢x,y+gcd(Ly,N)𝔢x,y = 𝔢x+gcd(Lx,N),y

𝔪(x)
x,y = 𝔪(x)

x,y+gcd(Lx,Ly,N)

PERIODIC BOUNDARY CONDITIONS

➤ First consequence: restricted non-local mobility

 is a  charge 𝔭x ℤgcd(Lx,N)

 is a  charge𝔭y ℤgcd(Ly,N)

 is a  flux 𝔤 ℤgcd(Lx,Ly,N)



NUMBER OF EXCITATION TYPES

31

Second Consequence: for a general excitation

ℓ = ℓ1𝔪x + ℓ2𝔪y + ℓ3𝔤 + ℓ4𝔢 + ℓ5𝔭x + ℓ6𝔭y

Without PBC:  excitation typesℓ ∈ ℤ6
N ⟹ N6

With PBC:  

and so  excitation 
types

ℓ ∈ ℤ3
N ⊗ ℤgcd(Lx,N) ⊗ ℤgcd(Ly,N) ⊗ ℤgcd(Lx,Ly,N)

N3 gcd(Lx, N) gcd(Ly, N) gcd(Lx, Ly, N)



TOPOLOGICAL DEGENERACY

32

Conjecture: on a torus, GSD equals number of 
topological excitations that are globally 
distinguishable

GSD = N3 gcd(Lx, N) gcd(Ly, N) gcd(Lx, Ly, N)

➤ We’ll independently check this correct in a bit



TOPOLOGICAL DEGENERACY
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Topological degeneracy (IR) depends on lattice (UV) details
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Claim: position dependent excitations cause UV/IR 
mixing

UV/IR MIXING

33

Manifestation of UV/IR mixing

Topological degeneracy (IR) depends on lattice (UV) details

Arose from global equivalence relations

Consequence of position dependent excitations

Interplay between topological order and lattice symmetry
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MUTUAL CHERN-SIMONS THEORY

SMCS =
Kij

4π ∫X3

a(i) ∧ da( j) + …

Mutual Chern-Simons (MCS) theory in 2+1D flat 
spacetime

35

➤  are dynamical 1-form fields with  gauge 
redundancy . 

➤  is a symmetric integer matrix

a(i) U(1)
Ω : a(i) ↦ a(i) + dω(i)

K
Wen & Zee, PRB 46.4 (1992): 2290.

Powerful theoretical tool to describe/characterize 
2+1D abelian topological orders



FROM R2TC TO MCS

36

Each field  corresponds to a basis anyon of 
the abelian topological order 

➤ R2TC:

a(i)

basis anyons
𝔪x

𝔪y

𝔤
𝔢
𝔭x

𝔭y

MCS fields
a(1)

a(2)

a(3)

a(4)

a(5)

a(6)
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From the UV lattice model:

➤ Braiding statistics between an anyon carrying  
unit-charge and an anyon carrying  unit-charge:

a(i)

a( j)

θij = 2π (K−1)ij

𝔢
𝔭x

𝔭y

Braiding phase θ 𝔪x 𝔪y 𝔤
0
0

0

0
0
0−2π/N

2π/N

2π/N

How to find  matrix?K

FROM R2TC TO MCS



MCS THEORY AND R2TC

K = (
03 C
C⊤ 03)

38

Using  can find  and thus :θij K−1 K

C = (
0 0 −N
0 N 0
N 0 0 )

Is this the IR theory? NO! Need zero modes of a(i)

S =
N
2π ∫X3

(a(3) ∧ da(4) + a(2) ∧ da(5) − a(1) ∧ da(6)) + …

➤ looks like three  toric codesℤN



OUR HERO WILSON’S LOOPS

Construction of  are complicated. See arXiv:2204.07111{Γi}

IR observables are Wilson loops  where  are 
a set of basis holonomies

Wi = exp[i Γi] Γi

Why? 

➤ Position dependent excitations sometimes only hop by  
(restricted mobility!) 

➤ Gauge fields  and gauge parameters  satisfy twisted 
periodic boundary conditions 

➤  are physical, so  must be gauge invariant

N

a(i) ω(i)

Wi Γi
39



OUR HERO WILSON’S LOOPS

Construction of  are complicated. See arXiv:2204.07111{Γi}

IR observables are Wilson loops  where  are 
a set of basis holonomies

Wi = exp[i Γi] Γi

Γ1(y, t) = ∮
Lx

0
dx a(3)

x

Γ2(x, t) = ∮
Ly

0
dy a (3)

y

Γ3(x, t) = ∮
Ly

0
dy a (2)

y

Γ4(y, t) = ∮
Lx

0
dx a(1)

x

Γ5(x, t) = ∮
lcm(Ly,N)

0
dy a (1)

y

Γ6(x, y, t) = ∮
lcm(Lx,gcd(Ly,N))

0
dx a(2)

x + ∮
nLy

0
dy a (1)

y

Γ7(y, t) = ∮
Lx

0
dx a(5)

x

Γ8(x, t) = ∮
Ly

0
dy a (5)

y

Γ9(y, t) = ∮
Lx

0
dx a(6)

x

Γ10(x, t) = ∮
Ly

0
dy a (6)

y

Γ11(y, t) = ∮
lcm(Lx, N)

0
dx a(4)

x Γ12(x, t) = ∮
lcm(Ly, N)
0

dy a (4)
y

nice holonomies 😃 fancy holonomies 😎

the evil holonomy 😈

39



ZERO MODES

40

Gauss-law constraint  enforces that in the ground 
states  are spatially independent

da(i) = 0
Γi

Γi(r, t) = φi(t) ∈ ℝ/2πℤ

a(3)
x (x, y, t) =

φ1(t)
Lx

a (3)
y (x, y, t) =

φ2(t)
Ly

a (2)
y (x, y, t) =

φ3(t)
Lx

a(1)
x (x, y, t) =

φ4(t)
Ly

a (1)
y (x, y, t) =

φ5(t)
lcm(Ly, N )

a(2)
x (x, y, t) =

N φ6(t) − n gcd(Ly, N ) φ5(t)
N lcm(Lx, gcd(Ly, N ))

a(5)
x (x, y, t) =

φ7(t)
Lx

a (5)
y (x, y, t) =

φ8(t)
Ly

a(6)
x (x, y, t) =

φ9(t)
Lx

a (6)
y (x, y, t) =

φ10(t)
Ly

a(4)
x (x, y, t) =

φ11(t)
lcm(Lx, N )

a (4)
y (x, y, t) =

φ12(t)
lcm(Ly, N )

nice zero modes 😃 fancy zero modes 😎

the evil zero mode 😈



IR EFFECTIVE THEORY

SIR =
bij

2π ∫ dt φi
dφj

dt
b = (

06 B
−B⊤ 06)

B =

0 0 0 0 0 Ny

0 0 0 0 −Nx 0
−N 0 0 0 0 0
0 0 0 −N 0 0
0 −n Nxy Ny 0 0 0
0 N Nxy /Ny 0 0 0 0

Nx ≡ gcd(Lx, N ),
Ny ≡ gcd(Ly, N ),

Nxy ≡ gcd(Lx, Ly, N ) .
41

Plugging zero modes into MCS action:

Key point: The IR 
action  depends on 
the UV lattice 

➤ direct manifestation 
of UV/IR mixing

SIR



GROUND STATE DEGENERACY

42

WiWj = exp [−2πi (b−1)ij] WjWi

Ground states form representation of the algebra 
satisfied by the Wilson loops:

Ground state degeneracy given by size of smallest 
faithful representation:

GSD = |pf(b) | = N3 gcd(Lx, N) gcd(Ly, N) gcd(Lx, Ly, N)

Wesolowski, Hosotani, & Ho, Int. J. Mod. Phys. A 9.06 (1994): 969-989.

➤ Matches ground state degeneracy found before!
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In the R2TC, position dependent excitations induced 
restricted mobility and UV/IR mixing in the form of 
lattice dependent topological degeneracy


