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WILSON’S PERSPECTIVE

Short Distances (UV) e.g., graphene
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Long Distances (IR)

The IR decouples from the UV



WILSON’S PROPAGANDA?

Our Hero: Wilson The Villain: UV/IR Mixing

UV /IR Mixing: The IR depends on the UV

» Long-distance sensitivity to short-distance details

» Mixing between small momenta and low energy

with large momenta

» (Cannot even define the IR theory without referring
to the UV theory



WILSON’S PROPAGANDA?

Our Hero: Wilson The Villain: UV/IR Mixing

UV /IR Mixing: The IR depends on the UV

» Long-distance sensitivity to short-distance details

In high-energy: In quantum matter:

» Noncommutative field theory » Fracton topological order
» Quantum Gravity » Exciton Bose liquid
Dengios 8 Nobrason, o, ok Phgs 134 (20000 T > Marginal Fermi liquids

Grosse, Steinacker, € Wohlgenannt. JHEP 2008.04 (2008): 023

Gorantla et al. PRB 104.23 (2021): 235116.
Berglund et al. arXiv:2202.06890 (2022).

You € Moessner. arXiw:2106.0766/4 (2021).
Lake, PRB 105.7 (2022): 075115. 4
Ye, Lee, & Zou, PRL 128.10 (2022): 106402.



DESTINATION FOR THIS TALK

Befriend UV /IR mixing and conceptually bridge
some fracton orders and some topological orders
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THE AGENDA

1. Review Topological and Fracton Order

2. Position-Dependent Excitations

3. Z, Rank-2 Toric Code (R2TC)

4. UV/IR mixing in R2TC from the UV

5. UV/IR mixing in R2TC from the IR



THE AGENDA

1. Review Topological and Fracton Order



TOPOLOGICAL ORDER

Topological orders occur in gapped, long-range entangled
quantum phases. Two key characteristics in our story:

Topological Degeneracy: number of ground

states depends on the topology of spacetime
Topological Excitations: particles that (1) () (L
cannot be created alone and (2) can be anyons & ] © (\®

The non-local order of a discrete higher-symmetry SSB phase?

Wen, Int. J. Mod. Phys. B 4.02 (1990) Chen ,Gu, & Wen, PRB 82.15 (2010): 155138.
Kitaev € Preskill, PRL 96.11 (2006): 110404. Wen, Science 363.6429 (2019)
Levin & Wen, PRL 96.11 (2006): 110405. MecGreevy, arXiv:2204.03045 (2022).



TOPOLOGICAL ORDER

Our Hero: Wilson

UV: Lattice Models
e.g., 2+1D Z, topological order

UV: toric code

H== |le-2 11

s ecos p ecop

IR: mutual Chern-Simons theory

1 [
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IR: Topological T Jys3

Quantum Field Theories




TOPOLOGICAL ORDER + SYMMETRY

The interplay between topological order and symmetry

leads to symmetry-enriched topological (SET) order

Conventional SET: Excitations carry fractional quantum

numbers of the symmetry (symmetry fractionalization)

-

1
» €.2., U= B FQH state

Electron

Wen, PRB 65.16 (2002): 165113.

Kou & Wen, PRB 80.22 (2009): 224406.
FEssin € Hermele, PRB 87.10 (2013): 104406.
Mesaros ¢ Ran, PRB 87.15 (2013): 155115.



TOPOLOGICAL ORDER + SYMMETRY

The interplay between topological order and symmetry

leads to symmetry-enriched topological (SET) order

Unconventional SET: Excitations also change type under

symmetry transformation

» Two excitations are of the same type if they can be

transformed into each other using local operators

may involve UV /IR mixing

Kou, Levin, € Wen, PRB 78.15 (2008): 15513/.
Lu & Vishwanath, PRB 95.15 (2016): 155121.
Tarantino, Lindner, & Fidkowski, New J. Phys. 18.83 (2016): 035006.

Barkeshli et al., PRB 100.11 (2019): 115147, 10



FRACTON ORDER

Fracton topological orders occur in gapped, long-range entangled
3+1D quantum phases. Two key characteristics in our story:

Subextensive Topological Degeneracy: number of grounds

states depends on the topology and geometry of lattice

Subdimensional Topological Excitations: particles (1)

cannot be created alone and (2) cannot move alone

Fractons: completely immobile

Lineons: can move along lines

Planons: can move within planes

Chamon, PRL 94.4 (2005): 040402. Vijay, Haah, € Fu. PRB 92.23 (2015): 235136.
Haah, PRA 83.4 (2011): 042330. Nandkishore €& Hermele, Annu. Rev. Condens. Matter Phys. 10 (2019): 295-313.
Yoshida, PRB 88.12 (2013): 125122. Pretko, Chen, € You, Int. J. Mod. Phys. A 35.06 (2020): 2030003.
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FRACTON ORDER

UV: Lattice Models

The Villain:
UV /IR Mixing

N

IR: Topological
Quantum Field Theories

Slagle & Kim, PRB 96.19 (2017): 195139.

Radicevic, arXiv:1910.06336 (2019). Rudelius, Seiberg, € Shao. PRB 105.19 (2021): 195113.

Slagle, Aasen, & Williamson, SciPost Physics 6.4 (2019): 043. Fontana, Gomes, € Chamon, SciPost Physics Core 4.2 (2021): 012.
You et al., Phys. Rev. Res. 2.2 (2020): 023249. Gorantla et al., arXiw:2201.10589 (2022).
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THE AGENDA

1. Review Topological and Fracton Order
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THE AGENDA

2. Position-Dependent Excitations
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POSITION DEPENDENT EXCITATIONS

Position dependent excitations: excitations at
different lattice sites are different types.

» Lixcitations that change type under lattice
translations

Unconventional SET orders: (T))" : a = a, # a for n < N

where N < L s.t. (T)" : a~ a (i.e., ay = a)

14



POSITION DEPENDENT EXCITATIONS

Unconventional SET orders: (T))" : a = a, # a for n < N

where N < L s.t. (T)" : a~ a (i.e., ay = a)
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POSITION DEPENDENT EXCITATIONS

Position dependent excitations: excitations at
different lattice sites are different types.

» Lixcitations that change type under lattice
translations

Fracton orders: (T))" :a v~ a, # a for all n < L,

(. )

Fractons: completely immobile so i = x,y,z

Lineons: e.g., can move in z direction: i = x,y but 7, : £ = ¢

Planons: e.g., can move in xy plane: i=zbut 7, ,: p = p

\_

J
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POSITION DEPENDENT EXCITATIONS

All subdimensional particles are position dependent
excitations, but not all position dependent

excitations are subdimensional particles

» Key point: all position dependent excitations have

restricted mobility

Claim: position dependent excitations causes

UV /IR mixing

15



THE AGENDA

2. Position-Dependent Excitations
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THE AGENDA

3. Z, Rank-2 Toric Code (R2TC)



HIGGS AND TOPOLOGICAL ORDER

The Higes phases of U(1l) gauge theory can have

topological order

» Higgs phase of vector U(1) gauge theory where
U(l) = Z,: exactly solvable point corresponds to the

Z  toric code

(, : c)
What about Higgs phase of symmetric

rank-2 tensor U(1) gauge theory?
- Y

17
Fradkin € Shenker, PRD 19.12 (1979): 3682.



SYMMETRIC TENSOR GAUGE THEORY

Deconfined phase of symmetric tensor U(1) gauge

theories are gapless fracton phases.
» (apped subdimensional particles with gapless

“photon” mode

Example: tensor gauge field AV and electric field
EY in 2-+1D with Gauss law p = 6iajE"j

(Gauge charges are fractons

“Flux loops” are lineons

Pretko, PRB 95.11 (2017): 1151839. 18



2+1D RANK-2 TORIC CODE

Square lattice with two Zy quantum rotors on each site

and one Z, quantum rotors on each plaquette

» Rank-2 Toric Code (R2TC): Exactly solvable point in
the Higgs phase of symmetric rank-2 tensor U(1) gauge

theory

Ma, Hermele, €& Chen, PRB 98.3 (2018): 035111, 19
Bulmash € Barkeshli, PRB 97.23 (2018): 235112.  Oh et al., PRB 105.4 (2022): 045128.



2+1D RANK-2 TORIC CODE

Square lattice with two Zy quantum rotors on each site

and one Z, quantum rotors on each plaquette

H=-) (Gx,y +FY + FO) + h.o.)

X,y
G F®
7 clock operators: e P
D O
S
ZX; = 0’iX,Z, C ® | O O—(G
()
. O ®
@ = expl2n1/N]
N _ 7N _
X =24 =1 Oz 0Oz, Oz Oxr Ox, OX
Ma, Hermele, €& Chen, PRB 98.3 (2018): 035111, 19

Bulmash € Barkeshli, PRB 97.23 (2018): 235112.  Oh et al., PRB 105.4 (2022): 045128.



R2TC IS EXACTLY SOLVABLE

H=-) (Gx,y +F9 + FO) + h.c.)

X,y
. (X) 1 = M1 =
Exactly solvable because: [Gx,y, Fx,,y,] — [Gx,y, Fx,,y,] =0
» The ground state |vac) satisfies:
G, ,|vac) = |vac) F)Efy)\vac) = | vac) ng)\vac) = | vac)

» A gapped excited states |y) satisfies:

(x) )
oly)  FOlw) = o™ |y)

20

G, lw)=w|y) FIly)=w



EXCITATIONS IN THE R2TC

Three species of excitations:

Zy charge: G, |w) = o |y)

€y | (x, )

() )
7\ fluxes: ng)h//) =" |y) and ng)h//) =" | )
(x) (y) f
m =
X,y ()C, y) mxay (.X, y)

21



GENERATING FUSION RULES

O 1 = ex,y ® éx+1,y & ex+1,y+1 ® éx,y+1




GENERATING FUSION RULES

Oz 0Oz, O%
— 1y (X) = (%)
=D OG¢= 1= mZ . & my

— ) — ()
1= me_ & m,

— 5, (X) = () (x) (y)
g 1 o mxay ® mxay ® mx,y+1 ® mx+1,y

=G




EMERGENT CONSERVATION LAWS

Fusion rules ——> conservation laws

1= mfﬁ)l,y ® mggg 0= m)(cx) = mgcx),



EMERGENT CONSERVATION LAWS

Fusion rules

1= m(x) ® I/l_”lgf)),

x—1,y
— ., =(y)
1= me_ & 1y

— 570 - () (x) ()
1 mx’y ® m-x’y ® mx,y+1 ® mx+1,y
1= ex—l,y ® ex,y ® ex,y ® ex+1,y
1= Cx,y—1 ® €xy ® €xy ® Cxy+1

1= ex,y Y éx+1,y X ex+1,y+1 X éx,y+1

conservation laws

— @ ()
0= m T My
IS () BN § )
0= mo T My,
PSS ¢ ) I § ) (x) ()
O o mx’y mx’y + mx,y+1 + mx+1,y’

O - ex_17y o 2eX,y + ex+19y

0= €y — 2ex,y + e

0= ex,y o ex+1,y + ex+1,y+1 o ex,y+1

24



EMERGENT CONSERVATION LAWS

Fusion rules

1= m(x) ® I/l_”lgf)),

x—1,y
— ., =(y)
1= me_ & 1y

1= mgcx; ® mﬁ(cyy) & mygy)ﬂ ® magJyr)l,y
1= €1,y 0y éx,y ® éx,y ® €x+ly
1= Cx,y—1 ® éx,y ® éx,y ® Cxy+1

1= ex,y ® éx_|_1,y ® ex+1,y+1 ® éx,y+1

1= (md)®"

conservation laws

— @ ()
0= m T My
IS () BN § )
0= mo T My,
PSS ¢ ) I § ) (x) ()
O o mx’y mx’y + mx,y+1 + mx+1,y’

O - ex_17y o 2eX,y + ex+19y

0= €y — 2ex,y + e

0= ex,y o ex+1,y + ex+1,y+1 o ex,y+1
— (x)
O0=Nmgj

24



EMERGENT CONSERVATION LAWS

Fusion rules

1= m(x) ® I/l_”lgf)),

x—1,y
— ., =(y)
1= me_ & 1y

1= mgcx; ® mﬁ(cyy) & mygy)ﬂ ® magJyr)l,y
1= €1,y 0y éx,y ® éx,y ® €x+ly
1= Cx,y—1 ® éx,y ® éx,y ® Cxy+1

1= ex,y ® éx_|_1,y ® ex+1,y+1 ® éx,y+1

1= (m)®N

’y
1= (mg;)@N
1= (ex,y)‘g’N

conservation laws

— @ ()
0= m T My
IS () BN § )
0= mo T My,
PSS ¢ ) I § ) (x) ()
O o mx’y mx’y + mx,y+1 + mx+1,y’

O - ex_17y o 2eX,y + ex+19y
0= €y — 2ex,y + e

0= ex,y o ex+1,y + ex+1,y+1 o ex,y+1
— (x)
O0=Nmgj

0=Nm)
O0=Ne,,

24



EMERGENT CONSERVATION LAWS

Fusion rules ——> conservation laws

1= mfi)l,y ® m) 0= mSC_)Ly —m),

1=m? @l 0=m® —mp),

1= mgcx; ® mﬁ(cyy) ® m)SCy)+1 ® magJyr)l,y 0=- m% B m)(cyy) + mfgﬂ + m)(chzl,y’
l=e_,,8¢,8¢,8¢,, O=e_;,— 2 ,+e,,

l=e, Qe Qe,8¢,, O=e.,;—2e,+e 4
I=e,®¢€,1,8¢€,1,11 8¢, O=ve =€yt e — eyt
1= (ni)®" 0=Nm

1= (m)® 0=Nm)

1= (e, )" O0=Ne,,

24

CThe conservation laws make life simpler! ]




POSITION DEPENDENT EXCITATIONS

Basis luxes: m* = mg%, mY = méy()), g=m¥ — mW

: D X — _ y — _
Basis charges: e =¢;,, P =e g—¢pp P =€y —¢np

4 h
mi=m'+tyg ml=m'-xg e =etxpiAyp
- )

Carry position dependent charge/flux = are position

dependent excitations

» Itie., e, =e,,: ecan move from (x,y) to (x,y’)

Conservation laws view: because charge is conserved

Fusion rules view: because 3 a string operator

25



POSITION DEPENDENT EXCITATIONS

Nm'=Nm"=Ng=Ne=Np'=Np' =0

\
m(X) m‘l‘yg m()’)zm)’_xg ex,y=e+xpx+ypy

J

Restricted Mobility

(X) (X) mY = m _

m m y y x+N Y exay o ex_l_N 5y
(X) (x) mY — m®» _

my mx YV+N Xy Uxy ex,y — ex,y+N

» m'" hops by 1 in longitudinal direction, by N in

transverse direction — pseudo-lineon

» ¢ hops by N in all directions — pseudo-fracton

26



THE AGENDA

3. Z, Rank-2 Toric Code (R2TC)



THE AGENDA

4. UV/IR mixing in R2TC from the UV



To see UV /IR mixing, need to consider an observable

» Topological degeneracy
GSD on torus = number of anyon types

(zeneral excitation carries:

f: flmx+f2my+f3g+f4e+f5px+f6py

So GSD = N®? Where’s UV/IR mixing?

Barkeshli et al, PRB 100.11 (2019): 115147. 28
Ji € Wen. Phys. Rev. Res. 1.3 (2019): 033054.



PERIODIC BOUNDARY CONDITIONS

Periodic boundary conditions give rise to global
equivalence relations:

) — @ ¥ — O _

My mx+Lx,y My = mx+Lx,y Cxy = Ex+L.y
() — &) ) — ) _

mx9y mx,y+Ly mxvy o mx,y+Ly ex,y o exay +Ly

This combined with the fact that these are Zy

charges/fluxes:

gcd(L,,N) p*=0 ged(L,, N) p’ =0
ged(L,, L,,N) ¢ =0

29



PERIODIC BOUNDARY CONDITIONS

Without PBC: m*, m, g, e, p*, p’ are Z, fluxes/charges

With PBC: m*, m”, and e still Z, fluxes/charges, but
pis a Zyq yy charge
p’is a Z (L, N) charge

g is a Zyyq, L,y Hux

» First consequence: restricted non-local mobility

() — 1) ) — )
mx,y mx,y+ ged(L,,Ly,N) mx’y mx+ng(Lx»LyaN ),y

€xy = Cxtged(L.N).y Cxy = ex,y+g<>d(Ly,N)

30



NUMBER OF EXCITATION TYPES

Second Consequence: for a general excitation

f: flmx+f2my+I/ﬂ3g+f4e+bﬂ5px+f6py

Without PBC: ¢ € Z]6\, —> N° excitation types

With PBC: ¢ € Z3, ® Zyar v ® Zoear, ) @ Zgcaw L)
and so N° ged(L,, N) ged(L,, N) ged(L,, L, N) excitation
types

31



TOPOLOGICAL DEGENERACY

Conjecture: on a torus, GSD equals number of

topological excitations that are globally

distinguishable

(GSD = N° gcd(L,, N) ged(Ly, N) ged(L,, L,, N ))

» We'll independently check this correct in a bit

32



TOPOLOGICAL DEGENERACY
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(Topological degeneracy (IR) depends on lattice (UV) details]

Manifestation of UV /IR mixing
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(Topological degeneracy (IR) depends on lattice (UV) details]

Manifestation of UV /IR mixing

Arose from global equivalence relations
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(Topological degeneracy (IR) depends on lattice (UV) details]

Manifestation of UV /IR mixing
( Arose from global equivalence relations

Consequence of position dependent excitations
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(Topological degeneracy (IR) depends on lattice (UV) details]

Manifestation of UV /IR mixing
( Arose from global equivalence relations

<y Consequence of position dependent excitations

Interplay between topological order and lattice symmetry
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(Topological degeneracy (IR) depends on lattice (UV) detaﬂs]

Manifestation of UV /IR mixing
( Arose from global equivalence relations

<y Consequence of position dependent excitations

Interplay between topological order and lattice symmetry

Claim: position dependent excitations cause UV /IR
mixing
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4. UV/IR mixing in R2TC from the UV



THE AGENDA

5. UV/IR mixing in R2TC from the IR



MUTUAL CHERN-SIMONS THEORY

"Powerful theoretical tool to describe / characterize

241D abelian topological orders

\_ _J

Mutual Chern-Simons (MCS) theory in 2-+1D flat

spacetime

q YN o dg )

=—\ aVAdaV +...

—

» g are dynamical 1-form fields with U(1) gauge
redundancy Q : ¥ - a® + do®.

» K 1s a symmetric integer matrix

35
Wen & Zee, PRB 46.4 (1992): 2290.



FROM R2TC TO MCS

Each field @' corresponds to a basis anyon of

the abelian topological order

» R2TC:
basis anyons MCOCS fields
m’ g
m’ e)
g E)
ey
pt q®)

p’ a'®

36



FROM R2TC TO MCS

How to find K matrix?

» Braiding statistics between an anyon carrying a®

unit-charge and an anyon carrying a"’ unit-charge:

_ _1
Hl-j =27 (K )ij
From the UV lattice model:

Braiding phase 6 m* m’ q
¢ 0 0 27/ N
pt 0 2n/N 0
p’ ~27/IN | () 0 )




MCS THEORY AND R2TC

Using 6, can find K~! and thus K:

0. C 0 0 —N
. N 0 O

S = EJ (a® Ada® +a® Ada® — a® A da®)
X3

» looks like three Zy toric codes

Is this the IR theory? NO! Need zero modes of a®

38



OUR HERO WILSON’S LOOPS

IR observables are Wilson loops W, = exp[1 I';] where I'; are

a set of basis holonomies

Construction of {I';} are complicated. See arXiv:2204.07111

Why?

» Position dependent excitations sometimes only hop by N
(restricted mobility!)

» Gauge fields a®” and gauge parameters ¥ satisfy twisted

periodic boundary conditions

» W. are physical, so I'; must be gauge invariant

39



OUR HERO WILSON’S LOOPS

IR observables are Wilson loops W, = exp[1 I';] where I'; are

a set of basis holonomies

Construction of {I';} are complicated. See arXiv:2204.07111

g . | R
nice holonomies &
an an
Myn=¢ dva? Ty,n=¢ dxa?
Ny O J O
rLy L,
L )=¢ dyal Text=¢ dyad
J O J O
"L, L
[, ) =¢ dy ay(2) ['g(y, 1) = (J; dx 646)
J 0 0
an Ly
Cn)=¢ dral Ty = ﬂg &y a®
o 0 O
\- y

( , )
fancy holonomies @
lem(L,,N)
[s(x, 1) = ﬂg dy ay(l)
0
lem(L,, N) tem(L,, V)
Oy (1) = 3E dx a® T, = <J> dy a;"
0 0
\— _J
(- . )
the evil holonomy &
lem(L,, gcd(Ly,N ) nL,
(X, y,1) = ﬂg dx a®® + ﬂg dy ay(l)
0 0
- _/

39



/ZFERO MODES

Gauss-law constraint da'¥? = 0 enforces that in the ground

states I'; are spatially independent

L'.(r,1) = @(t) € R/2nZ/

(- | )
| des @
n1Ce Z€ro 110aes
(3) . q”l(t) (5) . ¢7(t)
a X, ,t - a X, ,t -
X ( y ) Lx X ( y ) Lx
4 4
Cl}(,?))(x, v, Z) _ §02( ) a}(;5)(x, v, Z) _ §08( )
L)’ L)’
(2) . ¢3(t) (6) o §09(t)
a.“(x,y,t a,’(x,y,t) =
y Xy, 1) L. » (X, ¥, 1) L.
4 4
a)El)(x,y t) o ¢4( ) Cl)(,6)(x, v, t) _ §010( )
Ly Ly
\_ ,

( |

fancy zero modes @

(1) . (pS(t)
ay (% 1) lem(L,, N)
) ¢11(2) 4) _ P15(1)
a,”(x, y,1) em(L. V) a,”(x,y,1) lem(L,, V)
—
g the evil zero mode &
, N @g(t) — nged(L,, N) @s(1)
a®(x,y,1) =

L N lem(L,, gcd(Ly, N))

40




IR EFFECTIVE THEORY

b do; 0, B
SIR = _[df 0— b= T
S 2 dr —B" O
0 0 0 0 0 N,
r A
. 0 0 0 0 -N, O
Key point: The IR v 0 00 0 o
action SR depends on 0 60 -N 0 0
0 -nN, N, 0 0 0
the UV lattice 0 NN,/N, 0 0 0 0
» direct manifestation N, = ged(L., N),
of UV /IR mixing Ny = ged(Ly. V),
. y N,, = ged(L,, L,, N). B




GROUND STATE DEGENERACY

Ground states form representation of the algebra
satisfied by the Wilson loops:

W,W, = exp _—27ri (b_l)ij_ W.W,

Ground state degeneracy given by size of smallest

faithful representation:
GSD = |pf(b)| = N’ ged(L,, N) ged(L,, N) ged(L,, Ly, N)

» Matches ground state degeneracy found before!

Wesolowski, Hosotani, € Ho, Int. J. Mod. Phys. A 9.06 (1994): 969-989. 42



In the R2TC, position dependent excitations induced
restricted mobility and UV /IR mixing in the form of
lattice dependent topological degeneracy

V\//Tk Mixing
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