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Dualities are maps between two seemingly distinct theories

that are “secretly the same.”

» Both conceptually and practically useful



Dualities are maps between two seemingly distinct theories

that are “secretly the same.”

» Both conceptually and practically useful

Ask people on the street their favorite duality and hear:

T-duality, Level-rank duality,

Particle- Vortex duality, Kramers- Wannier duality
» These are not all the same notion of duality!

» Need to be more precise with “secretly the same.”



1. Exact duality: relates two different presentations of the

same quantum system (is an isomorphism).
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* there are certainly more than just three
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1. Exact duality: relates two different presentations of the

same quantum system (is an isomorphism).
» T-duality, S-duality, Level-rank duality

2. IR duality: relates two quantum systems that are distinct
in the UV but the same in the IR.

» Particle-vortex duality, Seiberg duality

3. Discrete gauging: relates two distinct quantum systems by

gauging a discrete symmetry.

» Kramers-Wannier duality, bosonization, fermionization

* there are certainly more than just three



Discrete gauging is generally unrelated to exact
duality and IR duality!

Typical Scenario Special Scenario

Gauging

Exact/IR dualities and discrete gauging

always implement different maps




The compact boson CFT at radius Ris a 1 + 1D CFT with
R2

Lr=-—0,00"® O~ D+ 27
47
» Has U(1) momentum and U(l) winding symmetries
R? 1
M __ w = v
‘],LL — %@L(I) J,UJ — 27_‘_6“,/8 b



The compact boson CFT at radius Ris a 1 + 1D CFT with

R2
Lr=-—0,00"® O~ D+ 27
47
» Has U(1) momentum and U(l) winding symmetries
R? 1
M __ w = v
‘],LL — %@L(I) J,UJ — 27_‘_6“,/8 b

T-duality is an isomorphism of all operators & all states of

Lr and L£1/r (it is an exact duality)
Lr Li/R

JM T-duality JWV
—
JW map JM



The compact boson CFT at radius Ris a 1 + 1D CFT with

R2
Lr=-—0,00"® O~ b+ 27
47
» Has U(1) momentum and U(l) winding symmetries
R? 1
M __ w = v
J, = %QMCID J, = 27T6W8 o
Gauging Z% implements the discrete gauging map
Lr LR/N
JM Gauge NJM
>
JW Ziny JW /N

» Has a nontrivial kernel spanned by QM ¢ NZ states



When R # /N, the image of Lg

- Li/r
: : ,@0‘63@1
under T-duality and Gauging 7,/ /

is different. Lrp




When R = vV N, the image of Lg T-duality

under T-duality and Gauging Z%‘ /\

1s the same. ﬁ\/N £1/\/N

» T-duality: Isomorphism of £ /5 \_/

and its Zn'-gauged theory Gauge Zy'




When R = vV N, the image of Lp T_duality
under T-duality and Gauging 74/ /\
is the same. ﬁ\/N £1/\/N
» T-duality: Isomorphism of £ /5 \/
and its Zn'-gauged theory Gauge Zy'

> NOIl—lIlVGl”tlble Symmetl“y* [Thorngren, Wang ’21; Choi, Cérdova, Hsin, Lam, Shao "21]

Lw Li/vn Lyw
JM Galjfe NJM T-duality NJW
JW AN, JW/N map JM/N

* A similar non-invertible symmetry exists for arbitrary R [Argurio, Collinucci, Galati, Hulik, Paznokas '24)



The existence of U(1) momentum, U(1) winding, &

this non-invertible symmetry provides an invariant
definition of T-duality.

> NOIl—iIlVGI‘tible Symmetl”y* [Thorngren, Wang ’21; Choi, Cérdova, Hsin, Lam, Shao "21]

L Lijvn L
JM Galjfe NJM T-duality NJW
JW AN, JW/N map JM/N

* A similar non-invertible symmetry exists for arbitrary R [Argurio, Collinucci, Galati, Hulik, Paznokas '24)



Can T-duality exist in lattice models that flow to the compact
boson in the IR?



Can T-duality exist in lattice models that flow to the compact
boson in the IR?

Yes: exists in the Modified Villain model

[Gross, Klebanov ’90; Gorantla, Lam, Seiberg, Shao ’21; Cheng, Seiberg ’22; Fazza, Sulejmanpasic ‘22]

» (Careful lattice regularization of the compact boson CFT



Can T-duality exist in lattice models that flow to the compact
boson in the IR?

Yes: exists in the Modified Villain model

|Gross, Klebanov ’'90; Gorantla, Lam, Seiberg, Shao '21; Cheng, Seiberg '22; Fazza, Sulejmanpasic ‘22]
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Can T-duality exist in lattice models that flow to the compact
boson in the IR?

Yes: exists in the Modified Villain model

[Gross, Klebanov ’90; Gorantla, Lam, Seiberg, Shao ’21; Cheng, Seiberg ’22; Fazza, Sulejmanpasic ‘22]

» (Careful lattice regularization of the compact boson CFT

Spacetime lattice &, € R ni; € 4
k

» Gauge redundancy with m; € Z

; ] nianz'j —I—mi—mj
» Infinite-dimensional local Hilbert space



What about lattice models with no resemblance to the

compact boson CFT? How about in qubit models?



What about lattice models with no resemblance to the

compact boson CFT? How about in qubit models?

This talk

1. In the XX model, there is a non-invertible symmetry and

corresponding lattice T-duality

2. Encounter a U(1) lattice winding symmetry and conserved
charges forming the Onsager algebra. We’ll discuss 't

Hooft anomalies and prove a gaplessness constraint

3. Explore symmetric deformations of the XX model



The XX model

Consider 1 4+ 1D quantum lattice model on a finite ring with

a qubit residing on each site 7
» The number of sites L is even
» Paull operators satisty X,y = X, and Z;; 1 = Z;

XX mOde]. HamﬂtOﬂiaH [Lieb, Schultz, Mattis ’61; Baxter ’71; --- |
L

Hxx = ) (X;jXjr1 +Y;Yj)
j=1

> Spin rotation U(1)™ symmetry

M_]‘LZ
@ —52 j
j=1



The XX model

XX HlOdel HamﬂtOﬂiaﬂ [Lieb, Schultz, Mattis '61; Baxter '71; --- |
L

Hxx = ) (X;Xjs1 + YY)
=1

> Spin rotation U(1)™ symmetry

Mo 1 LZ
Q) —52 j
=1



IR limit of the XX model

The IR of the XX model is described by the compact boson
CFT at R =2 (the U(1); WZW CFT)

[Alcaraz, Barber, Batchelor '87; Baake, Christe, Rittenberg 88|

» The IR limit: focus on low-energy states within an O(LO)
energy window above the ground state and take L — oo

o expli D]

IR limit
oM ——— oM [ M

> Q™ generates a U(1) momentum symmetry on the lattice



Does the XX model have a lattice T-duality?

» In the IR: implements an isomorphism between the R = V2

compact boson CFT and its Zé\/l gauged theory

L
Let’s gauge the Z5' symmetry elm@" — —1)YZ; in the XX
2 J

model g=1



Does the XX model have a lattice T-duality?

» In the IR: implements an isomorphism between the R = V2

compact boson CFT and its Zé\/l gauged theory

L
Let’s gauge the Z3' symmetry elm@" — H(—l)ij in the XX

model j=1
((—1)j2j> Gauge Zg/[\ (Zij+1>
AjXj+1 \ X

> 75" gauged Hamiltonian

L
Hyx jza = Z (Xj +Zj1X;Zj41)

j=1



Non-invertible symmetry of the XX model

Hamiltonians are unitarily equivalent: Hxx = UrHxx yznUr !

» U implements an isomorphism between the XX model

and its 212\4 cauged theory



Non-invertible symmetry of the XX model

Hamiltonians are unitarily equivalent: Hxx = Ut Hxx yznUr !

» U implements an isomorphism between the XX model

and its 212\4 cauged theory

12 Zon 1= X —1Z X
2n+1alg X2n+1o717 2nCZQn,2n—|—1)

B/j_llfj ] odd

Ur X, Ut =
T {Xij+1 jeven

Yj_le ] odd
Zij_|_1 ] evell

UrY;Ur " = {




Non-invertible symmetry of the XX model

Hamiltonians are unitarily equivalent: Hxx = UrHxx yznUr !

» There is a non-invertible symmetry D transtorming

XX, - odd
X]XJ—FI%{ JH1 942 ].O
Y;Yi11 J even
X X, - odd
Vi¥jg =4 0T
Yit1Yj4o J even

> Related to the St-family of TY(Z,,+) fusion category

symmetries of the compact boson CET' jruomgren, wang 21]

D2 — (1 + ei”QM) Te i5Q"




Lattice T-duality? What about the winding symmetry?



Lattice T-duality? What about the winding symmetry?

> Acting D on QM

DOM =20W"D
| L2
where Q"' = 1 Y (Xon—1Yan — Yon Xont1)
n=1

—> There is a lattice winding charge™

» Acting D on Q"
1
DOV = 5QMD

* Known conserved charge Of the XX model [Vernier, O’Brien, Fendley ’18; Miao °21; Popkov, Zhang, Géhmann, Kliimper 23]



The XX model has a lattice T-duality

» [somorphism between Hxx and Hyx /M
> Conserved lattice Q™ and QW charges

» Non-invertible symmetry exchanging Q™ and Q%

DOM = 20D DOV = %QMD




The charges QM and QY do not commute on the lattice

[QM,QW] 7&0 IR limit N [QM,QW] —0



The charges QM and QY do not commute on the lattice

[QM,QW} 7&0 IR limit N [QM,QW] —0

» They generate the Onsager algebra. Formed by conserved
charges @y, Gy, with Qo = Q™ and Q; = 2Q", satisfying

|Onsager '44; Vernier, O’Brien, Fendley '18; Miao 21|

[Qna Gm] = 21 (Qn—m — Qn—l—m)



The charges QM and QY do not commute on the lattice

[QM,QW} 7&0 IR limit N [QM,QW] —0

» They generate the Onsager algebra. Formed by conserved
charges @y, Gy, with Qo = Q™ and Q; = 2Q", satisfying

|Onsager '44; Vernier, O’Brien, Fendley '18; Miao 21|

[Qna Gm] = 21 (Qn—m — Qn—l—m)

0, _IRlimit {QQW n odd IR limit _,
n 7 7

OM  n even



The Onsager charges have a rich interplay with other

COIISQI”VQd Opel"atOl“S Of the XX mOdel |[Jones, Prakash, Fendley "24|

o . AW
» et D, = ei2Q" D and D, =79 D

T
T
T
Dy, Dy m Dy, Dy,
Sl O Sl A N i m—"_l 4 |, [ m—_ 4 [ a—_— 0 S m——

Da Da Da Q’/ Da Da




Anomalies

While searching for lattice T-duality, we found symmetries of
the XX model directly related to those in the IR.

» How do these symmetries match the 't Hoott anomalies in
the IR?



Anomalies

While searching for lattice T-duality, we found symmetries of
the XX model directly related to those in the IR.

» How do these symmetries match the 't Hoott anomalies in

the IR?
Consider the symmetry operators
. L L
e”TQ — H(—l)]Zj eiQQW C'= Xj
j=1 j=1

> Described by the group Z' x U(1)W x Z§

» Subgroup of the UV and IR symmetry groups



Anomalies
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While searching for lattice T-duality, we found symmetries of
the XX model directly related to those in the IR.

» How do these symmetries match the 't Hooft anomalies in
the IR?

7S x I3 x 7.3

type 111 anomaly

Z¥ < U™

mixed anomaly
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Anomalies

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

While searching for lattice T-duality, we found symmetries of
the XX model directly related to those in the IR.

» How do these symmetries match the 't Hooft anomalies in
the IR?

Spectral
7S x I3 x 7.3 Jlow

type III anomaly U(l)M

Z¥ < U™

mixed anomaly

Projective

algebras




Perturbative anomalies in the 1R

The mixed anomaly of U(1)™ x U(1)"Y in the compact
boson CF'T is a perturbative/local/torsion-free anomaly

» (Cannot be matched by gapped phases = enforces

gaplessness |- ; ordova, Freed, Teleman 24)
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Perturbative anomalies in the 1R

The mixed anomaly of U(1)™ x U(1)"Y in the compact

boson CF'T is a perturbative/local/torsion-free anomaly

» (Cannot be matched by gapped phases = enforces

gaplessness |- ; cordova, Freed, Teleman 24)

Do the lattice momentum and winding symmetries enforce

gaplessness”’

» Does the Onsager algebra match the perturbative

anomaly”’

Answer: Yes! Can show by fermionizing the XX model



We fermionize the XX model by gauging the Z>' symmetry

using complex fermion operators ¢; and cj;

[---; Radicevi¢ ’18; Borla, Verresen, Shah, Moroz '20; Seiberg, Shao '23; Aksoy, Mudry, Furusaki, Tiwari '23; Seifnashri '23]

» In terms of real fermions ¢; = (a; +ib;)/2

{aj, b} =0 laj,aj } = 20 ;i 10,00} = 20; ;i



We fermionize the XX model by gauging the Z>' symmetry

using complex fermion operators ¢; and cj;

[---; Radicevi¢ ’18; Borla, Verresen, Shah, Moroz '20; Seiberg, Shao '23; Aksoy, Mudry, Furusaki, Tiwari '23; Seifnashri '23]

» In terms of real fermions ¢; = (a; +ib;)/2

1a;,bj} =0 a5, a5} = 20;,5 105, bjr; = 2055
Gauging implemented using the Gauss law
G; = (=1)Zjia;b; =1
» Map to gauged theory summarized by

—iCLjCLj_|_1 ] odd

45— 1655, AjRit1 = {ib-b'+1 j even
Iy



Fermionize
Hxx \

QM Fermionize

Fermionize
20" >




Symmetric QY and Q* Hamiltonians

We assume the Hamiltonian 1s local:

L
Hy =Y gjnH)"

n j:]_




We assume the Hamiltonian 1s local:
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e e : (aj,b;) = (aj—1,b;41) invariance requires

Hj(n) to not have terms mixing a; and b; and g;n = gn



We assume the Hamiltonian 1s local:

L
Hy =Y gjnH)"

n j7=1

1 e 15Q%15QY . (4. b. < bei1) invari -
e e : (aj,b;) = (aj—1,b;41) invariance requires

Hj(n) to not have terms mixing a; and b; and g;n = gn
2. Under the el$Q" transformation
a; — cos(@) a; + sin(@) b, b; — cos(¢) b; —sin(¢) a;
—> Only allowed H ](n)are

H;™ = ia;a;p + ibibj



L
Hy = 1>: >,9n(ajaj+n +bjbjin)
n =1

The QY and Q* symmetric Hamiltonians are always gapless

» |In momentum space:

Hy = Z Wi c};ck, Wp = 4Zgn sin(2wkn /L)
keBZ n



L
Hy = 1>: >,9n(ajaj+n +bjbjin)
n =1

The QY and Q* symmetric Hamiltonians are always gapless

» |In momentum space:

Hy = Z Wi c};ck, Wp = 4Zgn sin(2wkn /L)
keBZ n

Bosonization: one-to-one correspondence between H; and

qubit Hamiltonians commuting with Q™ and QW
> Bosonization maps implemented by gauging (—1)"

> Because H is gapless, Q™ and Q" enforce gaplessness



000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

The perturbative anomaly of the compact boson CET

is matched by the Onsager algebra




When L = 0 mod 4, there is a unitary frame in which

L L
1 1
M W
Q — _5 E Zj Q — _Z E Xij_|_1
7=1 7=1

» Any qubit chain commuting with Z Z; and

ZXij+1 is gapless J
J




Can find U(1)™ and U(1)" symmetric deformations of the
XX model by bosonizing H ¢

bosonize
H;V » Xj X1 +YYj0

2 bosonize
H;? » YiZj1Xjre — XjZjp1 Y0

3) bosonize
H;” » XjZjv1Zjre X3 + Y2125 12Y43



Can find U(1)™ and U(1)" symmetric deformations of the
XX model by bosonizing H ¢

bosonize
H;V » Xj X1 +YYj0

2 bosonize
H;? » YiZj1Xjre — XjZjp1 Y0

3) bosonize
H;” » XjZjv1Zjre X3 + Y2125 12Y43

T MV
Non-invertible symmetry D arises from e 2@ T,

> U(1)™ and U(1)W guarantee the non-invertible symmetry

and a lattice T-duality



0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

L
2 3
H (g2,93) = Hxx +Z (g HJ( '+ g Hj( >)
71=1
Spin(4)1'k
1 C =
C = y— 9 phase
4 phase 4=
5
92 ﬁ\\ //%
v’ )
C—
phase ShZSé
Spin(6), U(1), Spin(6),
O—*oo 1 t 1 { t:
3 5



Many aspects of the compact boson CFT surprisingly exist
exactly in the XX model

1. Lattice T-duality and non-invertible symmetry
2. Lattice winding symmetry and 't Hooft anomalies

3. Symmetric deformations of the XX model



Many aspects of the compact boson CFT surprisingly exist
exactly in the XX model

1.
2.
3.

Lattice T-duality and non-invertible symmetry
Lattice winding symmetry and 't Hooft anomalies
Symmetric deformations of the XX model

Tip of an iceberg?

. T-duality for other radii? S-duality in 3 + 1D qubit models?

General relationship between perturbative anomalies and
algebras? Between exact dualities of QFTs and unitary

transtormations in quantum lattice models?



Back-up slides



Hamiltonians are unitarily equivalent: Hxx = UrHxx yznUr !

» There is a non-invertible symmetry operator D

Lon—1 —Lon—122n Xop—1Yoy
Zon Gauge Zy' ZonZLon+1 Un, —Yon Xoni1
Xon—1X2n / Xon XonXon+t1

XonXont1 Xon+1 YonYon41

» Implies that

(X;Y:.1)D  jodd ’
( J J‘|‘1) J.O ) DXJX]+1 :<
\(—}/ij_|_1) D ] eveln

(Xj+1Xj+2)D j odd

DZ; = <
: (Y;Y;41)D jeven

M

D? = (14 €™ ) Te 15 D@ = ¢"@" D = D,

TDT ! = el5Q@ el™@" D, Df = DT1e'5@"
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L I |
D — Tt H W | = —p®O—p®@}F --- Ap@)
| |

j=1

where the MPO tensor

1—Z]—|—XJ+IYS 1+Zj+Xj—in
7 odd,
- Z,+ X, —iY;, 1-Z,—X,—iY;

&l

DY = pi)| =

1+Zj—in—Yj —1+Zj—in+Y} .
7 even.
1-Z,—iX;,+Y, 1+Z+iX,+Y

S
Qo



The XX model has a continuous family of non-invertible

symmetries
Dy o = ei¢QMeiHQW D

> (Do) = (1+ eimQ™)eiQY (i(204+0)Q™ o3 (0-mQY T



The XX model has a continuous family of non-invertible

symmetries
Dy o = el9Q" Q7 D

> (Dyg)? = (1 + €@ )el#Q" ¢l 20F0OQ™ o3 (0-m)QT T

The R = v/2 compact boson CFT has an S-family of

e

d?Y(ZQ,_I_) Symmetry OperatOrS DSO |[Thorngren, Wang 21|




The XX model has a continuous family of non-invertible

symmetries
Dy o = el9Q" Q7 D

> (Dyg)? = (1 + €@ )el#Q" ¢l 20F0OQ™ o3 (0-m)QT T

The R = v/2 compact boson CFT has an S-family of

e

HTY(ZQ,_I_) Symmetry OperatOrS DSO |[Thorngren, Wang 21|

In the IR, T —1mit o oim(QM+Q™)

[Metlitski, Thorngren '17; Cheng, Seiberg '22]

IR limit

Dg,r—2¢ > Dy



» The Onsager algebra. Formed by conserved charges

{@n,Gn}

[Qna Gm] = 21 (Qn—m — Qn—l—m)

The Onsager charges @n in terms of Q™ and QY are

F25,QW St nodd
S,QMS1  n even

Qn:<

\\

» Where 5o =51 =1, 5y = ei”QV\: S3 = elmQ" (15 Q" :

» § are the pivots of Onsager algebra jjoues. prakash, Fendiey 24



% 2;1:1 ZJ‘ n=0,

Sik 2 > (XZj—l 1555 Zk Xojun + Yy [Ti55 01 Zi Y23'+n) n > 0 even,
Q, = (—1)2127—1 ZJLQ (X2j—1 H?:;;—z Zye Yojsn-1— Ya; Hifz*;;:; 7y X2j+n) n > 0 odd,

(_1)2&5_2 ZJI;? (Y2j+n—1 Hii_2§+n Zk Yoj-1+ Xajin Hii;;+n+l Zk XZJ') n <0 even,

(_1)2%1 > (X2j+n—1 [Tilon Ze Yaj1 = Yajin T ajinsn Z XZJ') 7 <0 odd,

sign(n) CDE SN2(1) (XY 0 + Vi X)) [0 Ze even,

k=j+1

G, =

n—1 .
sign(n) L2 Efﬁ(—l)” (X;X0m = YY) [IE71 Z1 m odd.

k=j+1



Unitary transformation

X ' odd
ZJ — ZJ ia’jaj+1bj,j+1 ) .XJ — { I J oud,

oy Xj aj i+1 J odd, o —Xj bj,j+1 9 odd,
a3‘3+1 ) J,J+1

Qubits now polarized Z; = 1



000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

(zauss law
G. — {Xa‘l,j (iajbjr1) Yi41 7 odd,
J ) )
—Yj1; (iabj1) Xj 41 J cven.

Unitary transtormation

—Xj-15a; Jodd, —X,;_1;b; 7 odd,
a; — { . bj — { .
Y1504 7 even, —Y,_1,;,b; 7 even,
Xi 1. - odd, .
Xjo; =18 77 J Zi—1; — (=171 Z;_1; (1a; b;).
Xj—l,j (1aj b:,) ] evell,

Fermions now polarized 1a,b; = 1



