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A TALE OF TWO SYMMETRIES

There are two types of symmetries of quantum systems

» Internal symmetries: preserve spacetime coordinates

(L, r) = @1, 1)

» Spacetime symmetries: transform spacetime coordinates

P, r) = P(i(t, 1), 71, 7))



A TALE OF TWO SYMMETRIES

There are two types of symmetries of quantum systems
» Internal symmetries: preserve spacetime coordinates
¢t r) = @1, 1)
» Spacetime symmetries: transform spacetime coordinates
p(t,1) = P(i(t, 1), 7 (t, 7))
Can have non-trivial interplays [Nati’s, Maissams’s, Weicheng’s, and Omer’s talks|
» For ordinary symmetries:

Supersymmetry, Lieb-Schultz-Mattis (LSM) anomalies,

| - G, = G- G, — 1, symmetry fractionalization, ---



A GENERALIZED TALE

How can generalized symmetries and crystalline symmetries

interplay in quantum lattice models?

Why care?

1. Searching for new interplays provides guidance towards

novel phenomena in quantum matter

2. Exploring examples helps motivate the mathematical

structure of symmetries in quantum lattice models



In a group-based XY model, we find a projective algebra
involving a Rep(G) X Z(G) symmetry and lattice translations

that constrains the allowed phases
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» (Gauging internal sub-symmetries of Rep(G) X Z(G) leads to
lattice models with non-invertible dipole symmetries and

non-invertible translation symmetries



In a group-based XY model, we find a projective algebra
involving a Rep(G) X Z(G) symmetry and lattice translations

that constrains the allowed phases

» (Gauging internal sub-symmetries of Rep(G) X Z(G) leads to
lattice models with non-invertible dipole symmetries and

non-invertible translation symmetries

» The SymTFT is a non-Abelian topological order enriched
by lattice translations. It is a foliated field theory, not a

topological field theory

[see Ho Tat’s Symmetries 2024 talk|



LSM ANOMALY IN THE XY MODEL

Many-qubit model on a periodic chain with Hamiltonian

L
= *olt Y o
H=), Jojo +Kdlay,
J=1

» There is an LSM anomaly involving the Z7 X X7}

Symmetl“y |[Chen, Gu, Wen 2010; Ogata, Tasaki 2021]

U. = Ha]?c, U, = Hajy , and lattice translations T
J J
» Manifests through the projective algebras cuens. seibers 2023

Translation defects 75 defect 7> defect

vU,=-Duu, | U,T=-TU,



A G-qudit is a |G |-level quantum mechanical system whose

states are |g) with g € G

» (G is a finite group, e.g. Z,, S;, Dg, SmallGroup(32,49)



A G-qudit is a |G |-level quantum mechanical system whose

states are |g) with g € G

» (G is a finite group, e.g. Z,, S;, Dg, SmallGroup(32,49)

Group based Pauli operators s 2oy

~ -]
» X operators labeled by group elements K [g =6 )

XO =Y [ghyn]  X©= |hg)h
h h

» 7 operators are MPOs labeled by irreps I': G — GL(d, C)

|
[ZO,5= Y [C)]apl hY(h| = am—zOmp (@ f= 1.2, dp)
' |




FExample: G = Z, where g€ {1,— 1} and I' € {1,1'}
X0 = XU = [z0],, =1

— — ,
XD = y(=D — 5% [Z(l )]11 — o7



FExample: G = Z, where g€ {1,— 1} and I' € {1,1'}
X0 = XU = [z0],, =1
YD — YD = 5 ZV],, = o°

Group based Pauli operators satisty

1. X© X0 = Xen o X0 = X and X© X0 = ¥ X
- =

2. X® X0 = X0 X® iff g and h commute
4 B —>

3. X®[ZzD) 4= [T(@)], 2], X®

— S —, _
4. Unitarity: Y@©T = X(g)’ Y@©T = X(g)’ [Z(F)T Z(F)]aﬁ _ 5aﬂ



GROUP BASED XY MODEL

Group based Pauli operators are useful for constructing

quantum lattice HlOdGlS [Brell 2014; Albert et. al. 2021; Fechisin, Tantivasadakarn, Albert 2023]



GROUP BASED XY MODEL

Group based Pauli operators are useful for constructing

quantum lattice HlOdGlS [Brell 2014; Albert et. al. 2021; Fechisin, Tantivasadakarn, Albert 2023]

Group based XY model: Consider a periodic 1d lattice of L
sites. On each site j resides a G-qudit and its Hamiltonian

L
_ (D)t 7(1) Y@ Y
Hyy = Z (ZJFTr (ZJ Zj+l> + ZKg X Xngrl) +he
J=1 I g
| |
Tr (2770) = 3 @0 e (e} = Yo HAN

{g} ‘ ‘

» LFor G = Z,, this is the ordinary quantum XY model



SYMMETRY OPERATORS

L

Hyy= ) (2 J.Tr (ZW Z<F>> + 2 K, X<g> X;ﬂ) + he

J=1

Z; lattice translations: T@]-TT =04,

Various internal symmetries:

> Z(G) symmetry U, = [ | ?J@ with z € Z(G)

] |
L (I’ | \IB
» Rep(G) symmetry Rp = Tr(HZj(F)> = z"HZ = .o 2z

Re= ) x(gi18+8.180) | {g}){{g}|
{g}

j=1



SYMMETRY OPERATORS

L

_)
Hyy= ) (2 J.Tr (ZW Z<F>> + 2 K, X<g> X;ﬂ) + he

J=1

Z; lattice translations: T@]-TT =04,

Various internal symmetries:

> Z(G) symmetry U, = [ | ?J@ with z € Z(G)

] |
L (I’ | \IB
» Rep(G) symmetry Rp = Tr(HZj(F)> ZOH 20 = o {20

j=1

Rra X Rrb — Rra®rb — R@c Ngbrc — Z NC?]?RFC
C



SYMMETRY OPERATORS

W

hen G = A is Abelian, R is an A symmetry operator

Rep(G) X Z(G) X Z; - AXAXZ;

When G is non-Abelian, R is a non-invertible symmetry

Re= ) x(gi18+8180) | {g}){{g}|
{g}



SYMMETRY OPERATORS




Z(G) SYMMETRY DEFECTS

On an infinite chain, a z € Z(G) symmetry defect can be
created at link (I —1,1) using

ﬁ
U(I) = H X

j>1
_>
> X%ﬁ moves this defect from (I — 1,1) to (I, I+ 1)

_>
» Twisted translation operator Tt(vzv) = X§Z) T



Z(G) SYMMETRY DEFECTS

On an infinite chain, a z € Z(G) symmetry defect can be
created at link (I —1,1) using
ﬁ
— (2)
O £
— 21
> X%ﬁ moves this defect from (I — 1,1) to (I, I+ 1)

_>
» Twisted translation operator Tt(vzv) = X§Z) T

Defect Hamiltonian on a ring found using the twisted
boundary conditions (Tt(\fv))L =U

<

(L1) _ xr(2) (D)t 7(I)
H{L! —HXY+Z( m 1>JFTr<ZL ZD) + he
I



A Rep(G) symmetry defect I has quantum dimension d-
» R-|y) =dp|y) on symmetric product state |y) = ®].L=1 | 1)

» To insert a I' symmetry defect, must enlarge Hilbert space:

%I‘*:%@Cdr



A Rep(G) symmetry defect I has quantum dimension d-
» R-|y) =dp|y) on symmetric product state |y) = ®].L=1 | 1)

» To insert a I' symmetry defect, must enlarge Hilbert space:

Create I' € Rep(G) defect at (I — 1,I) on infinite chain using

truncated symmetry operator Rr(I) = Z Rr(l; ) @ |a){f]
a.p

> Re(l;@) = (2100 | [ 127 10 = aw 2" H 2R H 20

1 I+1 1+2
- b




[' symmetry defect moved from (/ — 1,I) to (I,I+ 1) using
Z0T = 3 127, ® la)(p)
a.p

because R-(I+ 1) = Zgr)TRF(I )

» Twisted translation operator Tt(v? = /Z\f) (T®1)



[' symmetry defect moved from (/ — 1,I) to (I,I+ 1) using

Z0T = 3 127, ® la)(p)
/\ a,ﬂ
because R-(I+ 1) = Zgr)TRF(I )

» Twisted translation operator Tt(v? = /Z\EF) (T®1)

Defect Hamiltonian on a ring found using the twisted
L

» L A
boundary conditions (Tt(vg)) — H Z](F) r
j=1

T (g) =) [[()lula)p]
a.p

/

€« | —> ~~
HEY =Hy @14 ) K, X9X®® ( I (g) — 1) + hc
8

XYl



PROJECTIVE ALGEBRA FROM DEFECTS

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

4 R L)
_ (2) _ 1)
v, =]]x RF—Tr(HZJ )
J i=1
) — ) ) — 7@
&(vzv o X% I Ttw o ZI (T®1)J




PROJECTIVE ALGEBRA FROM DEFECTS

4 R L)
_ (2) _ (1)
v, =]]x RF—Tr(HZ] )
J j=1
—> A
_ ) — 7(@)
T =XPT =2paen

Letting e'%r? = y(2)/d-

Translation defects| z € Z(G) defect [' € Rep(G) defect

RF Uz — (eid)r(Z))L UZRF erl(‘)f]) - ei¢r(Z)71(\zz&r)RF Tt(\g) Uz — eid)r(Z) Uz ﬂg)

» (Generalizes the G = Z, projective algebra of the ordinary

quantum XY model



PROJECTIVE ALGEBRA FROM DEFECTS

Translation defects| z € Z(G) defect [' € Rep(G) defect

RU. = @ OLUR. | RTQ = OTOR. | TV Uy, = i@y, 7O

Example 1: G=8§; = Rep($3) X Z, X Z;
expligr(z)] = 1

et = y(2)/dr




PROJECTIVE ALGEBRA FROM DEFECTS

Translation defects| z € Z(G) defect [' € Rep(G) defect

RU. = @ OLUR. | RTQ = OTOR. | TV Uy, = i@y, 7O

Example 1: G=8§; = Rep($3) X Z, X Z;
expligr(z)] = 1

et = y(2)/dr

explig,(—=1)] = -1



PROJECTIVE ALGEBRA FROM DEFECTS

Translation defects| z € Z(G) defect [' € Rep(G) defect

RU. = @ OLUR. | RTQ = OTOR. | TV Uy, = i@y, 7O

Example 1: G=8§; = Rep($3) X Z, X Z;
expligr(z)] = 1

et = y(2)/dr

Example 2: G =Dy = Rep(Dg) X Z, X Z;
explig,(—1)] =—1
Example 3: G=D;, = Rep(Dy) X2, X Z;
explig (— 1] = explig (— D] = explig, (=] = — 1



PROJECTIVE ALGEBRA FROM DEFECTS

Translation defects | z € Z(G) defect [' € Rep(G) defect

RU. = (€N URL | RTO = 4 OTOR. | TO U = i@y T

£

he projective algebras are nontrivial for any

G with a nontrivial center Z(G)

» Will assume Z(G) is nontrivial from here on
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IS THERE AN LSM THEOREM?

Translation defects| z € Z(G) defect [' € Rep(G) defect

RU. = (€N URL | RTO = 4 OTOR. | TO U = i@y T

A projective algebra for invertible symmetry operators

implies an obstruction to SPT states (an 't Hooft anomaly):

» A projective algebra arising from inserting an invertible
detfect also obstructs SPTs states in the deftect-free model

[Matsui 2008; Yao, Oshikawa 2020; Seifnashri 2023; Kapustin, Sopenko 2024]

LSM theorem for G with Z(G) nontrivial in a 1d irrep

» e.g., D, withne€edZ ,+2



IS THERE AN LSM THEOREM?

Translation defects| z € Z(G) defect [' € Rep(G) defect

RU. = (€N URL | RTO = 4 OTOR. | TO U = i@y T

A projective algebra with non-invertible symmetry operators

does not imply an 't Hooft anomaly

> i.e., Rth(é) = eiqbf(Z)Tt(\fv)RF supports SPT state with Rp-|y) =0



IS THERE AN LSM THEOREM?

Translation defects| z € Z(G) defect [' € Rep(G) defect

RU. = (€N URL | RTO = 4 OTOR. | TO U = i@y T

A projective algebra with non-invertible symmetry operators

does not imply an 't Hooft anomaly

> i.e., Rth(é) = eiqbf(Z)Tt(\fv)RF supports SPT state with Rp-|y) =0

A projective algebra of invertible symmetry operators from a

non-invertible defect does not imply an 't Hooft anomaly

» Degeneracy can reflect the defects’ quantum dimension



IS THERE AN LSM THEOREM?

Translation defects | z € Z(G) defect [' € Rep(G) defect

RU. = (€N URL | RTO = 4 OTOR. | TO U = i@y T

/N o LSM theorem for G with Z(G) trivial in all
1d irreps (i.e., Z(G) C [G, G])

» Example G = Dg: using the SymTFEFT, there
are > 6 allowed Rep(Dyg) X Z, weak SPT states




NON-INVERTIBLE WEAK SPTs

For L such that the projective algebra R-U, = (v U Ry is
nontrivial, SPT ground states must satisty |(R;)| =0

Two possibilities:

1. An SPT state satisfies [(U.)| =1 and |(Rp)| =0 for all

system sizes L

2. For L = L* where all ()" = 1, an SPT state satisfies
(U | =1and [(Rp)|=d, but [(Rp)| =0 for L#L*



NON-INVERTIBLE WEAK SPTs

For L such that the projective algebra R-U, = (v U Ry is
nontrivial, SPT ground states must satisty |(R;)| =0
Two possibilities:

1. An SPT state satisfies [(U.)| =1 and |(Rp)| =0 for all

system sizes L

2. For L = L* where all ()" = 1, an SPT state satisfies
(U | =1and [(Rp)|=d, but [(Rp)| =0 for L#L*

The first possibility is incompatible with TQFT

» In a TQFT, (contractible TDL) = quantum dimension, so
all SPT states at L = L* should satisty |(Rp)| = df



NON-INVERTIBLE WEAK SPTs

@: L = L*, SPTs satisty |[(R)| = df \

At L=L*+1, SPTs satisty |(Rp)| =0

» RpU, = = (e'rh)l U.Rr implies that any SP'T is a non-

invertible weak SPT with translation defects dressed
kby non-invertible symmetry charge /




GAUGING WEB [Nat’s talk]

Projective algebras arising from inserting symmetry defects

affect the symmetries in the gauging web
» (auging web = duality web = orbifold groupoid

> e.g., gauging the anomaly-free Z5 sub-symmetry of an

anomalous Z5 X Zg symmetry in 14 1D leads to a dual Z,

Symmetl“y |[Bhardwaj, Tachikawa 2017; Chatterjee, Wen 2022; Zhang, Levin 2022|

The nontrivial projective algebras affect the symmetries in
the gauging web of Rep(G) X Z(G) X Z;



GAUGING WEB

@ep ) X Z1, with projective algebra
Rep(G / \

Non-
non-Abliean , .on
Finol R > invertible

1pole ( (G x Z(G)) xZy, ( ep(G ) X L) dipole

symmetry

symmetry

(G x Z(G) x non-invertible translation@

» Generalizes and unifies G = Z, results from Aksoy, Mudry, Furusaki,
Tiwari 2023 and Seifnashri 2023



GAUGING WEB




GAUGING UNIFORM Z(G)

To gauge Z(G), we add Z(G)-qudits on links and enforce the

(Gauss laws

G(z) _ SZ‘(Z) X(Z) g(z) — 1
J—Lj Jj+1

° ° ° ﬁ
» Irivializes the Z(G) symmetry operator U, = HX](.Z)



GAUGING UNIFORM Z(G)

To gauge Z(G), we add Z(G)-qudits on links and enforce the

(Gauss laws

G(z) _ SZ‘(Z) X(Z) g(z) — 1
J—Lj Jj+1

° ° ° ﬁ
» Irivializes the Z(G) symmetry operator U, = HXJ(.Z)

Z(G)-gauged G-based XY model is (p(z) = yr(2)/dy)

L
_ (pp) @) (T Y v(©
Hyyizc) = Z (ZJ zjsrlTr (Z Z ) + ZKg ng Xjf—l) +he
=1 I’ g

Dual Z(G) symmetry Rep(G) symmetry becomes
L
vV _ (p) _ I (Pr) 1-j
Up = sz,jﬂ Re=Tr(] | Z "z

J j=1



GAUGING UNIFORM Z(G)

-

Rep(G) is a modulated symmetry

TR-T"=U) Ry

> /; extended by Z(G) X Rep(G)

L
Hyyizoy = Y. (Z Jr Z)) Tr (ZW Z<F>) + 2 K, X<8> X;ﬂ) + hc
j=1 T

Dual Z(G) symmetry Rep(G) symmetry becomes
L
vV _ (p) _ r (or) 71—
Up = sz,jﬂ Re=Tr(] | Z "z

J j=1



@ep(G) X Z(G) x Z, with projective algebraD

Rep(G) /

( (G x Z(G)) xZp, )




To gauge Rep(G), we add G-qudits on links and enforce the

matrix product operator Gauss laws

I — @) (@) =)t _
[Gj ]“ﬂ o [gj—l,jzj zj,j+1]aﬁ _ 5a,ﬁ

> Hquivalent to requiring g = g;_1 ;& i+
L
» Trivializes the Rep(G) symmetry operator R = Tr(HZ].(F))
j=1
Minimal coupling leads to the Rep(G)-gauged model

L

_ (D) () T© 9@ e
Hyy/rep(G) = Z (ZJF I (Z] Zj+1> + Z K, Xj ‘S[j,j+1Xj+1> +he
j=1 T 8



To find the dual symmetry, it is useful to perform the unitary

transformation
() (D 7@ g () Y© o0 ¥ _ o9
Zj - 2oj—l,ij zj,j+1 Xj ‘%j,j+1Xj+1 — ‘%j,j+1
» (Gauss’s laws [Zj(r)]aﬂ = 0,4 decouple original G qudits
L
> _ (D (@) gD go(D) (g
Hyyirep(G) = Z (ZJF I <Zj,j+1Zj—l,jzj,j+lzj+l,j+2> + Z Ky ‘%jfgj+1> +he
j=1 N T g
Z(G) symmetry becomes Dual G symmetry

— o
I ERL  =T[2®
cal § Ity Re = 11475
j

J



Z(G) is a modulated symmetry
TUT =[R’]'U,

» /; extended by Z(G) X G

Z(G) symmetry becomes Dual G symmetry

_ @ 1J v _ TT 9@
U = H [‘%j,zjﬂ]] Ry = H‘%j,jﬂ
J




GAUGING MODULATED Z(G)

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

(G X Z(G) x non-invertible translation@




GAUGING MODULATED Z(G)

We can gauge the modulated Z(G) symmetry U, = H EA RS 1/

J,j+1
using Z(G)-qudits and the Gauss’s laws J
G(z) — X(Z) [g'(z) ]] X(z) =1
J,j+1 j+1

» Dual G X Z(G) symmetry Rg — H gz";é;) 1 and U;’ — H Zj(p)

J J



GAUGING MODULATED Z(G)

We can gauge the modulated Z(G) symmetry U, = H EA RS 1/

J,j+1
using Z(G)-qudits and the Gauss’s laws J
G(z) — X(Z) [g'(z) ]] X(z) =1
J,j+1 j+1

» Dual G X Z(G) symmetry Rg — H gz";é;) 1 and U;’ — H Zj(p)

J J
This gauging explicitly breaks translations: TGJ.(Z) TT + Gj(j)l
» There is a new non-invertible translation symmetry

V@ v Yo 90 Y
where, for instance, D: X; X]Jrl - X ‘E[J]HX]H



THE SYMMETRY TFT

A discrete gauging web in 1+1D can be formulated through a
2+1D topological theory called the SymTFET [sakura’s, Paul’s, Tian's talks|

| -+ ; Galotto, Kapustin, Seiberg, Willet (2014); Kong, Wen, Zheng (2015), Freed, Teleman (2018); Ji, Wen (2019);
Lichtman, Thorngren, Lindner, Stern, Berg (2020); Kong, Lan, Wen, Zhang, Zheng (2020); Gaiotto, Kulp (2020);
Aasen, Fendley, Mong (2020); Apruzzi, Bonetti, Etxebarria, Hosseini, Schafer-Nameki (2021); Chatterjee, Wen (2022); --- |



THE SYMMETRY TET

Gaiotto, Kapustin, Seiberg, Willet (2014);
Kong, Wen, Zheng (2015);

Freed, Teleman (2018);

Ji, Wen (2019);

Lichtman, Thorngren, Lindner, Stern, Berg (2020); Kong, Lan, Wen, Zhang, Zheng (2020); Gaiotto, Kulp (2020); Aasen, Fendley, Mong
(2020)

Apruzzi, Bonetti, Etxebarria, Hosseini, Schafer-Nameki (2021);

Chatterjee, Wen (2022); Apruzzi (2022); Chatterjee, Wen (2022); Moradi, Moosavian, Tiwari (2022); Freed, Moore, Teleman (2022);

Kaidi, Ohmori, Zheng (2022); Chatterjee, Ji, Wen (2022);

Kaidi, Nardoni, Zafrir, Zheng (2023); Zhang, Cordova (2023); Lan, Zhou (2023); Bhardwaj, Schafer-Nameki (2023); Chen, Cui,
Haghighat, Wang (2023); Apruzzi, Bonetti, Gould, Schafer-Nameki (2023); Bah, Leung, Waddleton (2023); Cdrdova, Hsin, Zhang (2023);
Cao, Jia (2023); SP (2023); Baume, Heckman, Hiibner, Torres, Turner, Yu (2023); Huang, Cheng (2023); Wen, Potter (2023); Inamura,
Wen (2023); Schuster, Tantivasadakarn, Vishwanath, Yao (2023); Bhardwaj, Bottini, Pajer, Schafer-Nameki (2023); SP, Zhu, Beaudry,
Wen (2023); Motamarri, McLauchlan, Béri (2023);

Brennan, Sun (2024); Antinucci, Benini (2024); Bonetti, Del Zotto, Minasian (2024); Apruzzi, Bedogna, Dondi (2024); Del Zotto, Nadir
Meynet, Moscrop (2024); Bhardaj, Pajer, Schafer-Nameki, Warman (2024); Argurio, Benini, Bertolini, Galati, Niro (2024); Wen, Ye,
Potter (2024); Franco, Yu (2024); Putrov, Radhakrishnan (2024); Chatterjee, Aksoy, Wen (2024); Bhardwaj, Bottini, Schafer-Nameki,
Tiwari (2024); Arbalestrier, Arguio, Tizzano (2024); Huang (2024); Bhardwaj, Inamura, Tiwari (2024); Hasan, Meynet, Migliorati
(2024); Nardoni, Sacchi, Sela, Zafrir, Zheng (2024); Heckman, Hibner (2024); Ji, Chen (2024); Antinucci, Benini, Rizi (2024); Copetti
(2024); Bhardaj, Pajer, Schafer-Nameki, Tiwari, Warman, Wu (2024)




THE SYMMETRY TFT

A discrete gauging web in 1+1D can be formulated through a
2+1D topological theory called the SymTFET [sakura’s, Paul’s, Tian's talks|

| -+ ; Galotto, Kapustin, Seiberg, Willet (2014); Kong, Wen, Zheng (2015), Freed, Teleman (2018); Ji, Wen (2019);
Lichtman, Thorngren, Lindner, Stern, Berg (2020); Kong, Lan, Wen, Zhang, Zheng (2020); Gaiotto, Kulp (2020);
Aasen, Fendley, Mong (2020); Apruzzi, Bonetti, Etxebarria, Hosseini, Schafer-Nameki (2021); Chatterjee, Wen (2022); --- |

Can construct the SymTFT by extending the (G x Z(G)) x Zp,
symmetry to 241D and gauging the internal sub-symmetry

» SymTFT is G X Z(G) gauge theory enriched by Z; lattice

translations in only one direction (a spacetime SET)

» (Can formulate as a quantum code made up G X Z(G)

qudits on edges of a square lattice



Code space is 7 = SpanC{ ly) € ®, CI4ON | A =G, =B =F = 1}

1 1 1
with A, =—— ) A®, G, = g9, By = BY and
|G ; Zon &% B0~ Tzg7 &5

Z p
Fr=— ) drFY
Ho |G &
I
Y (9) X2
A(g)= f?(g) Kf(g) gjé(z)z X (2) X(z)}(z)
r r
¥ () p(2)
zZ(p)

BY) = 2(p) Z(p)




/This code space corresponds to a foliated field theory,\
not a TEF'T

» Has discrete translation symmetry that acts as an

anyon automorphism
> G =2y S[ejgl)] — ﬂ ADdaD + pgp) +A(1)B(1)e)§1)
27

wee Ho Tat’s Symmetries 202 talk/ (ejgl) = A dxy




GAUGING WEB IN THE SYMTEFET

Different symmetries in the gauging web correspond to

different gapped boundaries of the SymTFT



GAUGING WEB IN THE SYMTEFET

Different symmetries in the gauging web correspond to

different gapped boundaries of the SymTFT

Rep(G) x Z(G) x Zy, with projective algebra

» A smooth (rough) boundary for G (Z(G)) qudits

1 7(T) _y(g) 2(9)
A7) (0) A r ;
A Al Aot 4D 3d0)
Z(p) 7(T)

» Boundary symmetry operators

L. Ly
B () (z) %(Z)

j=1



GAUGING WEB IN THE SYMTEFET

Different symmetries in the gauging web correspond to

different gapped boundaries of the SymTFT

(Rep(G) x Z(G)) x Zp,

» A smooth (smooth) boundary for G (Z(G)) qudits

R dONS40) Z(5) r(E)  x@X) Z(D)
- . rr(f)
X ) A Z(p) Jf(Z) Z‘;F,I,)T Z(T)
Z(p) z((T)

» Boundary symmetry operators

L, ) L.,
- (T) (pr) — Vo (or)t
RF o Tr (H Z(ijy)aa3 |:Z(j7Ly)vmi| ) Up o H Z(ijy)7aj

j=1



GAUGING WEB IN THE SYMTEFET

Different symmetries in the gauging web correspond to

different gapped boundaries of the SymTFT

(G x Z(G)) xZy,

» A rough (rough) boundary for G (Z(G)) qudits
1 1

A () A(p)

Z(p) z(()

» Boundary symmetry operators

Ly
Vo _ (9) _ Sy (2) (2) '
j=1

(.jaLy_]-)ay . sy



GAUGING WEB IN THE SYMTEFET

Different symmetries in the gauging web correspond to

different gapped boundaries of the SymTFT

G x Z(G) x non-invertible translations

» A rough (smooth) boundary for G (Z(G)) qudits

Z(p) 7 (pr)]—z—1 v x)
() (p) 40 - | P
A Z oot 4P (&) § )
2Z(p) 7z(T)

» Boundary symmetry operators

Ly % Lo Non-invertible
RV — (9) uY =11 z» )
g 31;[1 (4,Ly—1),y p 3:1_11 (4,Ly)x translations



OUTLOOK

We explored how generalized symmetries and crystalline

symmetries interplay in quantum lattice models of G-qudits

1. Generalized and crystalline symmetries with projective

algebras
2. Non-invertible weak SPTs

3. Non-invertible dipole and translation symmetries

This is just the tip of the iceberg!



