

INTERPLAYS OF GENERALIZED AND CRYSTALLINE SYMMETRIES IN G -QUDIT MODELS

Salvatore Pace

MIT

Applications of Generalized Symmetries and Topological Defects to Quantum Matter

SCGP, 2024

Ömer Aksoy

Ho Tat Lam

arXiv:2409.xxxxx

A TALE OF TWO SYMMETRIES

There are two types of symmetries of quantum systems

- **Internal symmetries**: preserve spacetime coordinates

$$\phi(t, r) \rightarrow \phi'(t, r)$$

- **Spacetime symmetries**: transform spacetime coordinates

$$\phi(t, r) \rightarrow \tilde{\phi}(\tilde{t}(t, r), \tilde{r}(t, r))$$

A TALE OF TWO SYMMETRIES

There are two types of symmetries of quantum systems

- **Internal symmetries**: preserve spacetime coordinates

$$\phi(t, r) \rightarrow \phi'(t, r)$$

- **Spacetime symmetries**: transform spacetime coordinates

$$\phi(t, r) \rightarrow \tilde{\phi}(\tilde{t}(t, r), \tilde{r}(t, r))$$

Can have **non-trivial interplays** [Nati's, Maissams's, Weicheng's, and Ömer's talks]

- For *ordinary* symmetries:

Supersymmetry, Lieb-Schultz-Mattis (LSM) anomalies,
 $1 \rightarrow G_{\text{int}} \rightarrow G \rightarrow G_{\text{st}} \rightarrow 1$, symmetry fractionalization, ...

A GENERALIZED TALE

How can **generalized symmetries** and **crystalline symmetries** interplay in quantum lattice models?

Why care?

1. Searching for **new interplays** provides guidance towards novel phenomena in **quantum matter**
2. Exploring examples helps motivate the **mathematical structure** of symmetries in quantum lattice models

TL;DR FOR THIS TALK

In a group-based XY model, we find a **projective algebra** involving a $\text{Rep}(G) \times Z(G)$ symmetry and lattice translations that **constrains the allowed phases**

TL;DR FOR THIS TALK

In a group-based XY model, we find a **projective algebra** involving a $\text{Rep}(G) \times \text{Z}(G)$ symmetry and lattice translations that **constrains the allowed phases**

- **Gauging** internal sub-symmetries of $\text{Rep}(G) \times \text{Z}(G)$ leads to lattice models with **non-invertible dipole** symmetries and **non-invertible translation** symmetries

TL;DR FOR THIS TALK

In a group-based XY model, we find a **projective algebra** involving a $\text{Rep}(G) \times \text{Z}(G)$ symmetry and lattice translations that **constrains the allowed phases**

- **Gauging** internal sub-symmetries of $\text{Rep}(G) \times \text{Z}(G)$ leads to lattice models with **non-invertible dipole** symmetries and **non-invertible translation** symmetries
- The **SymTFT** is a non-Abelian topological order enriched by lattice translations. It is a **foliated field theory**, not a topological field theory

[see Ho Tat's Symmetries 2024 talk]

LSM ANOMALY IN THE XY MODEL

Many-qubit model on a periodic chain with Hamiltonian

$$H = \sum_{j=1}^L J \sigma_j^x \sigma_{j+1}^x + K \sigma_j^y \sigma_{j+1}^y$$

- There is an **LSM anomaly** involving the $\mathbb{Z}_2^x \times \mathbb{Z}_2^y \times \mathbb{Z}_L$ symmetry [Chen, Gu, Wen 2010; Ogata, Tasaki 2021]

$$U_x = \prod_j \sigma_j^x, \quad U_y = \prod_j \sigma_j^y, \quad \text{and lattice translations } T$$

- Manifests through the **projective algebras** [Cheng, Seiberg 2023]

<i>Translation defects</i>	\mathbb{Z}_2^x defect	\mathbb{Z}_2^y defect
$U_x U_y = (-1)^L U_y U_x$	$U_y T = - T U_y$	$T U_x = - U_x T$

GROUP BASED QUDITS

A G -qudit is a $|G|$ -level quantum mechanical system whose states are $|g\rangle$ with $g \in G$

- G is a **finite group**, e.g. \mathbb{Z}_2 , S_3 , D_8 , `SmallGroup(32,49)`

GROUP BASED QUDITS

A **G -qudit** is a $|G|$ -level quantum mechanical system whose states are $|g\rangle$ with $g \in G$

- G is a **finite group**, e.g. $\mathbb{Z}_2, S_3, D_8, \text{SmallGroup}(32,49)$

Group based **Pauli operators** [Brell 2014]

- X operators labeled by group elements

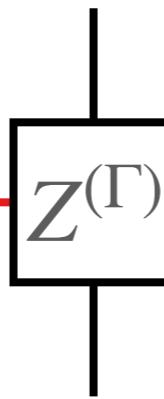
$$\vec{X}^{(g)} = \sum_h |gh\rangle\langle h|$$

$$\overleftarrow{X}^{(g)} = \sum_h |h\bar{g}\rangle\langle h|$$

$$\bar{g} \equiv g^{-1}$$

- Z operators are MPOs labeled by **irreps** $\Gamma: G \rightarrow \text{GL}(d_\Gamma, \mathbb{C})$

$$[Z^{(\Gamma)}]_{\alpha\beta} = \sum_h [\Gamma(h)]_{\alpha\beta} |h\rangle\langle h| \equiv \alpha \text{---} Z^{(\Gamma)} \text{---} \beta \quad (\alpha, \beta = 1, 2, \dots, d_\Gamma)$$



GROUP BASED QUDITS

Example: $G = \mathbb{Z}_2$ where $g \in \{1, -1\}$ and $\Gamma \in \{1, 1'\}$

$$\vec{X}^{(1)} = \overleftarrow{X}^{(1)} = [Z^{(1)}]_{11} = 1$$

$$\vec{X}^{(-1)} = \overleftarrow{X}^{(-1)} = \sigma^x \quad [Z^{(1')}]_{11} = \sigma^z$$

GROUP BASED QUDITS

Example: $G = \mathbb{Z}_2$ where $g \in \{1, -1\}$ and $\Gamma \in \{1, 1'\}$

$$\vec{X}^{(1)} = \overleftarrow{X}^{(1)} = [Z^{(1)}]_{11} = 1$$

$$\vec{X}^{(-1)} = \overleftarrow{X}^{(-1)} = \sigma^x \quad [Z^{(1')}]_{11} = \sigma^z$$

Group based Pauli operators satisfy

1. $\vec{X}^{(g)} \vec{X}^{(h)} = \vec{X}^{(gh)}$, $\overleftarrow{X}^{(g)} \overleftarrow{X}^{(h)} = \overleftarrow{X}^{(gh)}$, and $\vec{X}^{(g)} \overleftarrow{X}^{(h)} = \overleftarrow{X}^{(h)} \vec{X}^{(g)}$
2. $\vec{X}^{(g)} \vec{X}^{(h)} = \vec{X}^{(h)} \vec{X}^{(g)}$ iff g and h commute
3. $\vec{X}^{(g)} [Z^{(\Gamma)}]_{\alpha\beta} = [\Gamma(\bar{g})]_{\alpha\gamma} [Z^{(\Gamma)}]_{\gamma\beta} \vec{X}^{(g)}$
4. **Unitarity**: $\vec{X}^{(g)\dagger} = \vec{X}^{(\bar{g})}$, $\overleftarrow{X}^{(g)\dagger} = \overleftarrow{X}^{(\bar{g})}$, $[Z^{(\Gamma)\dagger} Z^{(\Gamma)}]_{\alpha\beta} = \delta_{\alpha\beta}$

GROUP BASED XY MODEL

Group based **Pauli operators** are useful for constructing quantum lattice models [Brell 2014; Albert *et. al.* 2021; Fechisin, Tantivasadakarn, Albert 2023]

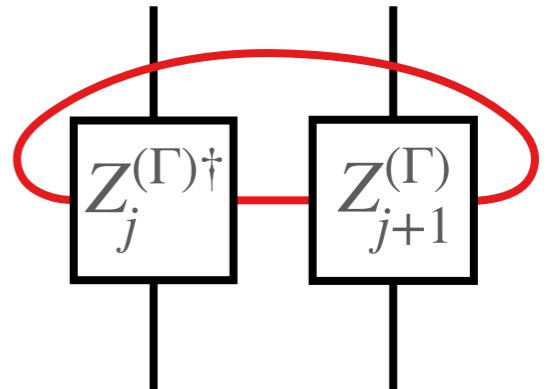
GROUP BASED XY MODEL

Group based **Pauli operators** are useful for constructing quantum lattice models [Brell 2014; Albert *et. al.* 2021; Fechisin, Tantivasadakarn, Albert 2023]

Group based **XY model**: Consider a **periodic 1d lattice** of L sites. On each site j resides a **G -qudit** and its Hamiltonian

$$H_{XY} = \sum_{j=1}^L \left(\sum_{\Gamma} J_{\Gamma} \text{Tr} \left(Z_j^{(\Gamma)\dagger} Z_{j+1}^{(\Gamma)} \right) + \sum_g K_g \overleftarrow{X}_j^{(g)} \overrightarrow{X}_{j+1}^{(g)} \right) + \text{hc}$$

$$\text{Tr} \left(Z_j^{(\Gamma)\dagger} Z_{j+1}^{(\Gamma)} \right) = \sum_{\{g\}} \chi_{\Gamma}(\bar{g}_j g_{j+1}) | \{g\} \rangle \langle \{g\} | \equiv$$



- For $G = \mathbb{Z}_2$, this is the ordinary quantum **XY model**

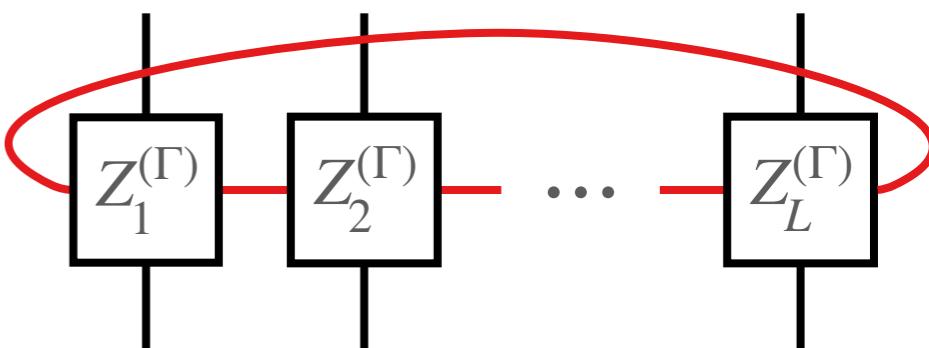
SYMMETRY OPERATORS

$$H_{XY} = \sum_{j=1}^L \left(\sum_{\Gamma} J_{\Gamma} \text{Tr} \left(Z_j^{(\Gamma)\dagger} Z_{j+1}^{(\Gamma)} \right) + \sum_g K_g \overleftarrow{X}_j^{(g)} \overrightarrow{X}_{j+1}^{(g)} \right) + \text{hc}$$

\mathbb{Z}_L lattice translations: $T \mathcal{O}_j T^\dagger = \mathcal{O}_{j+1}$

Various internal symmetries:

► $Z(G)$ symmetry $U_z = \prod_j \overrightarrow{X}_j^{(z)}$ with $z \in Z(G)$

► $\text{Rep}(G)$ symmetry $R_{\Gamma} = \text{Tr} \left(\prod_{j=1}^L Z_j^{(\Gamma)} \right) \equiv$ 

$$R_{\Gamma} = \sum_{\{g\}} \chi_{\Gamma}(g_1 g_2 \cdots g_{L-1} g_L) | \{g\} \rangle \langle \{g\} |$$

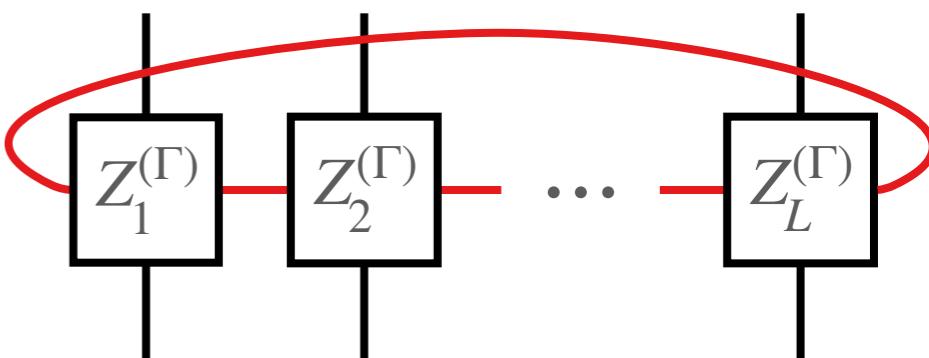
SYMMETRY OPERATORS

$$H_{XY} = \sum_{j=1}^L \left(\sum_{\Gamma} J_{\Gamma} \text{Tr} \left(Z_j^{(\Gamma)\dagger} Z_{j+1}^{(\Gamma)} \right) + \sum_g K_g \overleftarrow{X}_j^{(g)} \overrightarrow{X}_{j+1}^{(g)} \right) + \text{hc}$$

\mathbb{Z}_L lattice translations: $T \mathcal{O}_j T^\dagger = \mathcal{O}_{j+1}$

Various internal symmetries:

► $Z(G)$ symmetry $U_z = \prod_j \overrightarrow{X}_j^{(z)}$ with $z \in Z(G)$

► $\text{Rep}(G)$ symmetry $R_{\Gamma} = \text{Tr} \left(\prod_{j=1}^L Z_j^{(\Gamma)} \right) \equiv$ 

$$R_{\Gamma_a} \times R_{\Gamma_b} = R_{\Gamma_a \otimes \Gamma_b} = R_{\bigoplus_c N_{ab}^c \Gamma_c} = \sum_c N_{ab}^c R_{\Gamma_c}$$

SYMMETRY OPERATORS

$$H_{XY} = \sum_{\Gamma}^L \left(\sum_{\Gamma} J_{\Gamma} \text{Tr} \left(Z_j^{(\Gamma)\dagger} Z_{j+1}^{(\Gamma)} \right) + \sum_{g} K_g \overleftarrow{X}_j^{(g)} \overrightarrow{X}_{j+1}^{(g)} \right) + \text{hc}$$

When $G = A$ is **Abelian**, R_{Γ} is an A symmetry operator

$$\text{Rep}(G) \times Z(G) \times \mathbb{Z}_L \rightarrow A \times A \times \mathbb{Z}_L$$

When G is **non-Abelian**, R_{Γ} is a **non-invertible symmetry**

$$R_{\Gamma} = \sum_{\{g\}} \chi_{\Gamma}(g_1 g_2 \cdots g_{L-1} g_L) | \{g\} \rangle \langle \{g\} |$$

$$R_{\Gamma_a} \times R_{\Gamma_b} = R_{\Gamma_a \otimes \Gamma_b} = R_{\bigoplus_c N_{ab}^c \Gamma_c} = \sum_c N_{ab}^c R_{\Gamma_c}$$

SYMMETRY OPERATORS

$$H_{XY} = \sum_{j=1}^L \left(\sum_{\Gamma} J_{\Gamma} \text{Tr} \left(Z_j^{(\Gamma)\dagger} Z_{j+1}^{(\Gamma)} \right) + \sum_g K_g \overset{\leftarrow}{X}_j^{(g)} \vec{X}_{j+1}^{(g)} \right) + \text{hc}$$

\mathbb{Z}_L lattice tra

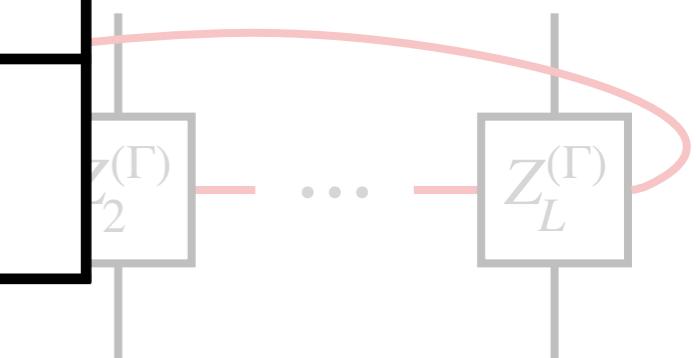
Various inter

➤ Z(G) symm

➤ Rep(G) symm

G	$\text{Rep}(G) \times Z(G)$
\mathbb{Z}_2	$\mathbb{Z}_2^x \times \mathbb{Z}_2^y$
S_3	$\text{Rep}(S_3)$
D_8	$\text{Rep}(D_8) \times \mathbb{Z}_2$

$j=1$



$$R_{\Gamma_a} \times R_{\Gamma_b} = R_{\Gamma_a \otimes \Gamma_b} = R_{\bigoplus_c N_{ab}^c \Gamma_c} = \sum_c N_{ab}^c R_{\Gamma_c}$$

Z(G) SYMMETRY DEFECTS

On an infinite chain, a $z \in Z(G)$ **symmetry defect** can be created at link $\langle I-1, I \rangle$ using

$$U_z(I) = \prod_{j \geq I} \vec{X}_j^{(z)}$$

- $\vec{X}_I^{(z)\dagger}$ moves this **defect** from $\langle I-1, I \rangle$ to $\langle I, I+1 \rangle$
- Twisted translation operator $T_{\text{tw}}^{(z)} = \vec{X}_I^{(z)} T$

Z(G) SYMMETRY DEFECTS

On an infinite chain, a $z \in Z(G)$ **symmetry defect** can be created at link $\langle I-1, I \rangle$ using

$$U_z(I) = \prod_{j \geq I} \vec{X}_j^{(z)}$$

- $\vec{X}_I^{(z)\dagger}$ moves this **defect** from $\langle I-1, I \rangle$ to $\langle I, I+1 \rangle$
- Twisted translation operator $T_{\text{tw}}^{(z)} = \vec{X}_I^{(z)} T$

Defect Hamiltonian on a ring found using the twisted boundary conditions $(T_{\text{tw}}^{(z)})^L = U_z$

$$H_{XY;z}^{\langle L,1 \rangle} = H_{XY} + \sum_{\Gamma} \left(\frac{\chi_{\Gamma}(\bar{z})}{d_{\Gamma}} - 1 \right) J_{\Gamma} \text{Tr} \left(Z_L^{(\Gamma)\dagger} Z_1^{(\Gamma)} \right) + \text{hc}$$

Rep(G) SYMMETRY DEFECTS

A Rep(G) symmetry defect Γ has quantum dimension d_Γ

- $R_\Gamma |\psi\rangle = d_\Gamma |\psi\rangle$ on symmetric product state $|\psi\rangle = \bigotimes_{j=1}^L |1\rangle$
- To insert a Γ symmetry defect, must enlarge Hilbert space:

$$\mathcal{H}_\Gamma = \mathcal{H} \otimes \mathbb{C}^{d_\Gamma}$$

Rep(G) SYMMETRY DEFECTS

A Rep(G) symmetry defect Γ has quantum dimension d_Γ

- $R_\Gamma |\psi\rangle = d_\Gamma |\psi\rangle$ on symmetric product state $|\psi\rangle = \bigotimes_{j=1}^L |1\rangle$
- To insert a Γ symmetry defect, must enlarge Hilbert space:

$$\mathcal{H}_\Gamma = \mathcal{H} \otimes \mathbb{C}^{d_\Gamma}$$

Create $\Gamma \in \text{Rep}(G)$ defect at $\langle I-1, I \rangle$ on infinite chain using truncated **symmetry operator** $R_\Gamma(I) = \sum_{\alpha, \beta} R_\Gamma(I; \alpha) \otimes |\alpha\rangle\langle\beta|$

- $R_\Gamma(I; \alpha) = [Z_I^{(\Gamma)}]_{\alpha, \alpha_I} \prod_{j>I} [Z_j^{(\Gamma)}]_{\alpha_{j-1} \alpha_j} \equiv \alpha \xrightarrow{\text{red}} Z_I^{(\Gamma)} \xrightarrow{\text{red}} Z_{I+1}^{(\Gamma)} \xrightarrow{\text{red}} Z_{I+2}^{(\Gamma)} \dots$

Rep(G) SYMMETRY DEFECTS

Γ symmetry defect moved from $\langle I-1, I \rangle$ to $\langle I, I+1 \rangle$ using

$$\hat{Z}_I^{(\Gamma)\dagger} = \sum_{\alpha, \beta} [Z_I^{(\Gamma)\dagger}]_{\alpha\beta} \otimes |\alpha\rangle\langle\beta|$$

because $R_\Gamma(I+1) = \hat{Z}_I^{(\Gamma)\dagger} R_\Gamma(I)$

- Twisted translation operator $T_{\text{tw}}^{(\Gamma)} = \hat{Z}_I^{(\Gamma)} (T \otimes \mathbf{1})$

Rep(G) SYMMETRY DEFECTS

Γ symmetry defect moved from $\langle I-1, I \rangle$ to $\langle I, I+1 \rangle$ using

$$\hat{Z}_I^{(\Gamma)\dagger} = \sum_{\alpha, \beta} [Z_I^{(\Gamma)\dagger}]_{\alpha\beta} \otimes |\alpha\rangle\langle\beta|$$

because $R_\Gamma(I+1) = \hat{Z}_I^{(\Gamma)\dagger} R_\Gamma(I)$

► Twisted translation operator $T_{\text{tw}}^{(\Gamma)} = \hat{Z}_I^{(\Gamma)} (T \otimes 1)$

Defect Hamiltonian on a ring found using the twisted

boundary conditions $(T_{\text{tw}}^{(\Gamma)})^L = \prod_{j=1}^L \hat{Z}_j^{(\Gamma)}$

$$\widehat{\Gamma}(g) = \sum_{\alpha, \beta} [\Gamma(g)]_{\alpha\beta} |\alpha\rangle\langle\beta|$$

$$H_{XY; \Gamma}^{\langle L, 1 \rangle} = H_{XY} \otimes 1 + \sum_g K_g \overleftarrow{X}_L^{(g)} \overrightarrow{X}_1^{(g)} \otimes \left(\widehat{\Gamma}(g) - 1 \right) + \text{hc}$$

PROJECTIVE ALGEBRA FROM DEFECTS

$$U_z = \prod_j \vec{X}_j^{(z)}$$

$$T_{\text{tw}}^{(z)} = \vec{X}_I^{(z)} T$$

$$R_\Gamma = \text{Tr} \left(\prod_{j=1}^L Z_j^{(\Gamma)} \right)$$

$$T_{\text{tw}}^{(\Gamma)} = \hat{Z}_I^{(\Gamma)} (T \otimes \mathbf{1})$$

PROJECTIVE ALGEBRA FROM DEFECTS

$$U_z = \prod_j \vec{X}_j^{(z)}$$

$$T_{\text{tw}}^{(z)} = \vec{X}_I^{(z)} T$$

$$R_\Gamma = \text{Tr} \left(\prod_{j=1}^L Z_j^{(\Gamma)} \right)$$

$$T_{\text{tw}}^{(\Gamma)} = \hat{Z}_I^{(\Gamma)} (T \otimes \mathbf{1})$$

Letting $e^{i\phi_\Gamma(z)} \equiv \chi_\Gamma(z)/d_\Gamma$

<i>Translation defects</i>	$z \in Z(G)$ defect	$\Gamma \in \text{Rep}(G)$ defect
$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$	$R_\Gamma T_{\text{tw}}^{(z)} = e^{i\phi_\Gamma(z)} T_{\text{tw}}^{(z)} R_\Gamma$	$T_{\text{tw}}^{(\Gamma)} U_z = e^{i\phi_\Gamma(z)} U_z T_{\text{tw}}^{(\Gamma)}$

- Generalizes the $G = \mathbb{Z}_2$ **projective algebra** of the ordinary quantum XY model

PROJECTIVE ALGEBRA FROM DEFECTS

<i>Translation defects</i>	$z \in Z(G)$ defect	$\Gamma \in \text{Rep}(G)$ defect
$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$	$R_\Gamma T_{\text{tw}}^{(z)} = e^{i\phi_\Gamma(z)} T_{\text{tw}}^{(z)} R_\Gamma$	$T_{\text{tw}}^{(\Gamma)} U_z = e^{i\phi_\Gamma(z)} U_z T_{\text{tw}}^{(\Gamma)}$

Example 1: $G = S_3 \implies \text{Rep}(S_3) \times \mathbb{Z}_1 \times \mathbb{Z}_L$

$$\exp[i\phi_\Gamma(z)] = 1$$

$$e^{i\phi_\Gamma(z)} \equiv \chi_\Gamma(z)/d_\Gamma$$

PROJECTIVE ALGEBRA FROM DEFECTS

<i>Translation defects</i>	$z \in Z(G)$ defect	$\Gamma \in \text{Rep}(G)$ defect
$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$	$R_\Gamma T_{\text{tw}}^{(z)} = e^{i\phi_\Gamma(z)} T_{\text{tw}}^{(z)} R_\Gamma$	$T_{\text{tw}}^{(\Gamma)} U_z = e^{i\phi_\Gamma(z)} U_z T_{\text{tw}}^{(\Gamma)}$

Example 1: $G = S_3 \implies \text{Rep}(S_3) \times \mathbb{Z}_1 \times \mathbb{Z}_L$

$$\exp[i\phi_\Gamma(z)] = 1$$

$$e^{i\phi_\Gamma(z)} \equiv \chi_\Gamma(z)/d_\Gamma$$

Example 2: $G = D_8 \implies \text{Rep}(D_8) \times \mathbb{Z}_2 \times \mathbb{Z}_L$

$$\exp[i\phi_2(-1)] = -1$$

PROJECTIVE ALGEBRA FROM DEFECTS

<i>Translation defects</i>	$z \in Z(G)$ defect	$\Gamma \in \text{Rep}(G)$ defect
$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$	$R_\Gamma T_{\text{tw}}^{(z)} = e^{i\phi_\Gamma(z)} T_{\text{tw}}^{(z)} R_\Gamma$	$T_{\text{tw}}^{(\Gamma)} U_z = e^{i\phi_\Gamma(z)} U_z T_{\text{tw}}^{(\Gamma)}$

Example 1: $G = S_3 \implies \text{Rep}(S_3) \times \mathbb{Z}_1 \times \mathbb{Z}_L$
 $\exp[i\phi_\Gamma(z)] = 1$

$$e^{i\phi_\Gamma(z)} \equiv \chi_\Gamma(z)/d_\Gamma$$

Example 2: $G = D_8 \implies \text{Rep}(D_8) \times \mathbb{Z}_2 \times \mathbb{Z}_L$
 $\exp[i\phi_2(-1)] = -1$

Example 3: $G = D_{12} \implies \text{Rep}(D_{12}) \times \mathbb{Z}_2 \times \mathbb{Z}_L$
 $\exp[i\phi_{1_3}(-1)] = \exp[i\phi_{1_4}(-1)] = \exp[i\phi_{2_6}(-1)] = -1$

PROJECTIVE ALGEBRA FROM DEFECTS

<i>Translation defects</i>	$z \in Z(G)$ defect	$\Gamma \in \text{Rep}(G)$ defect
$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$	$R_\Gamma T_{\text{tw}}^{(z)} = e^{i\phi_\Gamma(z)} T_{\text{tw}}^{(z)} R_\Gamma$	$T_{\text{tw}}^{(\Gamma)} U_z = e^{i\phi_\Gamma(z)} U_z T_{\text{tw}}^{(\Gamma)}$

Example 1: $G = S_3 \longrightarrow \text{Rep}(S_3) \times \mathbb{Z} \times \mathbb{Z}$

The **projective algebras** are nontrivial for any G with a nontrivial center $Z(G)$

Example

- Will assume $Z(G)$ is nontrivial from here on

Example 3: $G = D_{12} \implies \text{Rep}(D_{12}) \times \mathbb{Z}_2 \times \mathbb{Z}_L$

$$\exp[i\phi_{1_3}(-1)] = \exp[i\phi_{1_4}(-1)] = \exp[i\phi_{2_6}(-1)] = -1$$

```

SmallGroup(8,3): Structure = D8; Center = C2
SmallGroup(8,4): Structure = Q8; Center = C2
SmallGroup(12,1): Structure = C3 : C4; Center = C2
SmallGroup(12,4): Structure = D12; Center = C2
SmallGroup(16,3): Structure = (C4 x C2) : C2; Center = C2 x C2
SmallGroup(16,4): Structure = C4 : C4; Center = C2 x C2
SmallGroup(16,6): Structure = C8 : C2; Center = C4
SmallGroup(16,7): Structure = D16; Center = C2
SmallGroup(16,8): Structure = QD16; Center = C2
SmallGroup(16,9): Structure = Q16; Center = C2
SmallGroup(16,11): Structure = C2 x D8; Center = C2 x C2
SmallGroup(16,12): Structure = C2 x Q8; Center = C2 x C2
SmallGroup(16,13): Structure = (C4 x C2) : C2; Center = C4
SmallGroup(18,3): Structure = C3 x S3; Center = C3
SmallGroup(20,1): Structure = C5 : C4; Center = C2
SmallGroup(20,4): Structure = D20; Center = C2
SmallGroup(24,1): Structure = C3 : C8; Center = C4
SmallGroup(24,3): Structure = SL(2,3); Center = C2
SmallGroup(24,4): Structure = C3 : Q8; Center = C2
SmallGroup(24,5): Structure = C4 x S3; Center = C4
SmallGroup(24,6): Structure = D24; Center = C2
SmallGroup(24,7): Structure = C2 x (C3 : C4); Center = C2 x C2
SmallGroup(24,8): Structure = (C6 x C2) : C2; Center = C2
SmallGroup(24,10): Structure = C3 x D8; Center = C6
SmallGroup(24,11): Structure = C3 x Q8; Center = C6
SmallGroup(24,13): Structure = C2 x A4; Center = C2
SmallGroup(24,14): Structure = C2 x C2 x S3; Center = C2 x C2
SmallGroup(27,3): Structure = (C3 x C3) : C3; Center = C3
SmallGroup(27,4): Structure = C9 : C3; Center = C3
SmallGroup(28,1): Structure = C7 : C4; Center = C2
SmallGroup(28,3): Structure = D28; Center = C2
SmallGroup(30,1): Structure = C5 x S3; Center = C5
SmallGroup(30,2): Structure = C3 x D10; Center = C3
SmallGroup(32,2): Structure = (C4 x C2) : C4; Center = C2 x C2 x C2
SmallGroup(32,4): Structure = C8 : C4; Center = C4 x C2
SmallGroup(32,5): Structure = (C8 x C2) : C2; Center = C4 x C2
SmallGroup(32,6): Structure = (C2 x C2 x C2) : C4; Center = C2
SmallGroup(32,7): Structure = (C8 : C2) : C2; Center = C2
SmallGroup(32,8): Structure = C2 . ((C4 x C2) : C2) = (C2 x C2) . (C4 x C2); Center = C2
SmallGroup(32,9): Structure = (C2 x C2) . (C2 x C2) = (C2 x C2) . (C2 x C2); Center = C2

```

IS THERE AN LSM THEOREM?

<i>Translation defects</i>	$z \in Z(G)$ defect	$\Gamma \in \text{Rep}(G)$ defect
$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$	$R_\Gamma T_{\text{tw}}^{(z)} = e^{i\phi_\Gamma(z)} T_{\text{tw}}^{(z)} R_\Gamma$	$T_{\text{tw}}^{(\Gamma)} U_z = e^{i\phi_\Gamma(z)} U_z T_{\text{tw}}^{(\Gamma)}$

A **projective algebra** for **invertible symmetry operators** implies an obstruction to SPT states (an '**'t Hooft anomaly**):

- A **projective algebra** arising from inserting an *invertible* defect also obstructs SPTs states in the defect-free model
[Matsui 2008; Yao, Oshikawa 2020; Seifnashri 2023; Kapustin, Sopenko 2024]

LSM theorem for G with $Z(G)$ nontrivial in a 1d irrep

- e.g., D_{2n} with $n \in 4\mathbb{Z}_{\geq 0} + 2$

IS THERE AN LSM THEOREM?

<i>Translation defects</i>	$z \in Z(G)$ defect	$\Gamma \in \text{Rep}(G)$ defect
$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$	$R_\Gamma T_{\text{tw}}^{(z)} = e^{i\phi_\Gamma(z)} T_{\text{tw}}^{(z)} R_\Gamma$	$T_{\text{tw}}^{(\Gamma)} U_z = e^{i\phi_\Gamma(z)} U_z T_{\text{tw}}^{(\Gamma)}$

A **projective algebra** with **non-invertible symmetry** operators does *not* imply an **'t Hooft anomaly**

- i.e., $R_\Gamma T_{\text{tw}}^{(z)} = e^{i\phi_\Gamma(z)} T_{\text{tw}}^{(z)} R_\Gamma$ supports SPT state with $R_\Gamma |\psi\rangle = 0$

IS THERE AN LSM THEOREM?

<i>Translation defects</i>	$z \in Z(G)$ defect	$\Gamma \in \text{Rep}(G)$ defect
$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$	$R_\Gamma T_{\text{tw}}^{(z)} = e^{i\phi_\Gamma(z)} T_{\text{tw}}^{(z)} R_\Gamma$	$T_{\text{tw}}^{(\Gamma)} U_z = e^{i\phi_\Gamma(z)} U_z T_{\text{tw}}^{(\Gamma)}$

A **projective algebra** with **non-invertible symmetry** operators does *not* imply an '**t Hooft anomaly**

► i.e., $R_\Gamma T_{\text{tw}}^{(z)} = e^{i\phi_\Gamma(z)} T_{\text{tw}}^{(z)} R_\Gamma$ supports SPT state with $R_\Gamma |\psi\rangle = 0$

A **projective algebra** of **invertible symmetry** operators from a non-invertible defect does *not* imply an '**t Hooft anomaly**

► Degeneracy can reflect the defects' quantum dimension

IS THERE AN LSM THEOREM?

<i>Translation defects</i>	$z \in Z(G)$ defect	$\Gamma \in \text{Rep}(G)$ defect
$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$	$R_\Gamma T_{\text{tw}}^{(z)} = e^{i\phi_\Gamma(z)} T_{\text{tw}}^{(z)} R_\Gamma$	$T_{\text{tw}}^{(\Gamma)} U_z = e^{i\phi_\Gamma(z)} U_z T_{\text{tw}}^{(\Gamma)}$

A **projective algebra** with non-invertible symmetry operators

does

No **LSM theorem** for G with $Z(G)$ trivial in all

► i.e., $1d$ irreps (i.e., $Z(G) \subset [G, G]$)

A **projective** algebra with non-invertible symmetry operators in a

non-trivial $Z(G)$ has a **LSM theorem** for G with a

► Example $G = D_8$: using the SymTFT, there

are ≥ 6 allowed $\text{Rep}(D_8) \times \mathbb{Z}_2$ **weak SPT states**

► Degeneracy can reflect the defects' quantum dimension

NON-INVERTIBLE WEAK SPTs

For L such that the **projective algebra** $R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$ is nontrivial, **SPT** ground states must satisfy $|\langle R_\Gamma \rangle| = 0$

Two possibilities:

1. An **SPT** state satisfies $|\langle U_z \rangle| = 1$ and $|\langle R_\Gamma \rangle| = 0$ for all system sizes L
2. For $L = L^*$ where all $(e^{i\phi_\Gamma(z)})^{L^*} = 1$, an **SPT** state satisfies $|\langle U_z \rangle| = 1$ and $|\langle R_\Gamma \rangle| = d_\Gamma$, but $|\langle R_\Gamma \rangle| = 0$ for $L \neq L^*$

NON-INVERTIBLE WEAK SPTs

For L such that the **projective algebra** $R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$ is nontrivial, **SPT** ground states must satisfy $|\langle R_\Gamma \rangle| = 0$

Two possibilities:

1. An **SPT** state satisfies $|\langle U_z \rangle| = 1$ and $|\langle R_\Gamma \rangle| = 0$ for all system sizes L
2. For $L = L^*$ where all $(e^{i\phi_\Gamma(z)})^{L^*} = 1$, an **SPT** state satisfies $|\langle U_z \rangle| = 1$ and $|\langle R_\Gamma \rangle| = d_\Gamma$, but $|\langle R_\Gamma \rangle| = 0$ for $L \neq L^*$

The first possibility is incompatible with TQFT

- In a TQFT, $\langle \text{contractible TDL} \rangle = \text{quantum dimension}$, so all SPT states at $L = L^*$ should satisfy $|\langle R_\Gamma \rangle| = d_\Gamma$

NON-INVERTIBLE WEAK SPTs

For L when the **projective algebra** $R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$ is nontrivial, SPT ground states must satisfy $|\langle R_\Gamma \rangle| = 0$

- 1 At $L = L^*$, SPTs satisfy $|\langle R_\Gamma \rangle| = d_\Gamma$
- 2 At $L = L^* + 1$, SPTs satisfy $|\langle R_\Gamma \rangle| = 0$
- 2 ➤ $R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$ implies that any SPT is a **non-invertible weak SPT** with translation defects dressed by non-invertible symmetry charge

The first possibility is incompatible with $\Gamma \otimes \Gamma$

- In a TQFT, $\langle \text{contractible TDL} \rangle = \text{quantum dimension}$, so all SPT states at $L = L^*$ should satisfy $|\langle R_\Gamma \rangle| = d_\Gamma$

GAUGING WEB

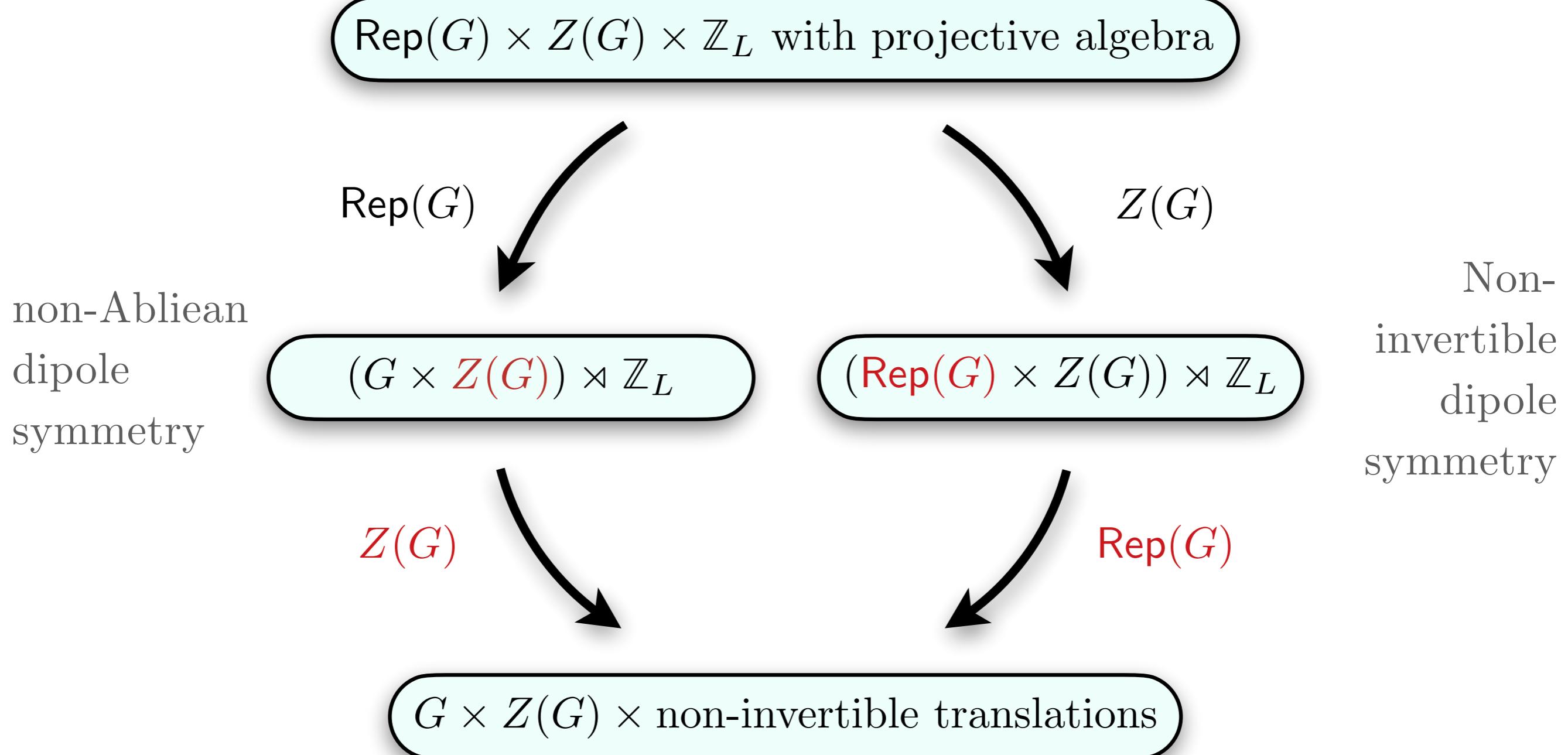
[Nat's talk]

Projective algebras arising from inserting symmetry defects affect the symmetries in the gauging web

- Gauging web = duality web = orbifold groupoid
- e.g., gauging the anomaly-free \mathbb{Z}_2^a sub-symmetry of an anomalous $\mathbb{Z}_2^a \times \mathbb{Z}_2^b$ symmetry in 1 + 1D leads to a dual \mathbb{Z}_4 symmetry [Bhardwaj, Tachikawa 2017; Chatterjee, Wen 2022; Zhang, Levin 2022]

The nontrivial projective algebras affect the symmetries in the gauging web of $\text{Rep}(G) \times \text{Z}(G) \times \mathbb{Z}_L$

GAUGING WEB



- Generalizes and unifies $G = \mathbb{Z}_2$ results from Aksoy, Mudry, Furusaki, Tiwari 2023 and Seifnashri 2023

GAUGING WEB



GAUGING UNIFORM $Z(G)$

To **gauge $Z(G)$** , we add $Z(G)$ -qudits on links and enforce the Gauss laws

$$G_j^{(z)} = \overleftarrow{\mathcal{X}}_{j-1,j}^{(z)} \overrightarrow{X}_j^{(z)} \overrightarrow{\mathcal{X}}_{j,j+1}^{(z)} = 1$$

- **Trivializes** the $Z(G)$ symmetry operator $U_z = \prod \overrightarrow{X}_j^{(z)}$

GAUGING UNIFORM $Z(G)$

To **gauge $Z(G)$** , we add $Z(G)$ -qudits on links and enforce the Gauss laws

$$G_j^{(z)} = \overleftarrow{\mathcal{X}}_{j-1,j}^{(z)} \overrightarrow{X}_j^{(z)} \overrightarrow{\mathcal{X}}_{j,j+1}^{(z)} = 1$$

► Trivializes the $Z(G)$ symmetry operator $U_z = \prod \overrightarrow{X}_j^{(z)}$

$Z(G)$ -gauged G -based XY model is $(\rho_\Gamma(z) = \chi_\Gamma(z)/d_\Gamma)$

$$H_{XY/Z(G)} = \sum_{j=1}^L \left(\sum_{\Gamma} J_{\Gamma} \mathcal{Z}_{j,j+1}^{(\rho_\Gamma)} \text{Tr} \left(Z_j^{(\Gamma)\dagger} Z_{j+1}^{(\Gamma)} \right) + \sum_g K_g \overleftarrow{X}_j^{(g)} \overrightarrow{X}_{j+1}^{(g)} \right) + \text{hc}$$

Dual $Z(G)$ symmetry

$$U_\rho^\vee = \prod_j \mathcal{Z}_{j,j+1}^{(\rho)}$$

Rep(G) symmetry becomes

$$R_\Gamma = \text{Tr} \left(\prod_{j=1}^L Z_j^{(\Gamma)} [\mathcal{Z}_{j,j+1}^{(\rho_\Gamma)}]^{-j} \right)$$

GAUGING UNIFORM $Z(G)$

To gauge $Z(G)$ we add $Z(G)$ -gauds on links and enforce the Gauss law

$\text{Rep}(G)$ is a modulated symmetry

$$T R_\Gamma T^\dagger = U_{\rho_\Gamma}^\vee R_\Gamma$$

- Trivializes \mathbb{Z}_L extended by $Z(G) \times \text{Rep}(G)$

$Z(G)$ -gauged G -based XY model is $(\rho_\Gamma(z) = \chi_\Gamma(z)/d_\Gamma)$

$$H_{XY/Z(G)} = \sum_{j=1}^L \left(\sum_{\Gamma} J_\Gamma \mathcal{Z}_{j,j+1}^{(\rho_\Gamma)} \text{Tr} \left(Z_j^{(\Gamma)\dagger} Z_{j+1}^{(\Gamma)} \right) + \sum_g K_g \overleftarrow{X}_j^{(g)} \overrightarrow{X}_{j+1}^{(g)} \right) + \text{hc}$$

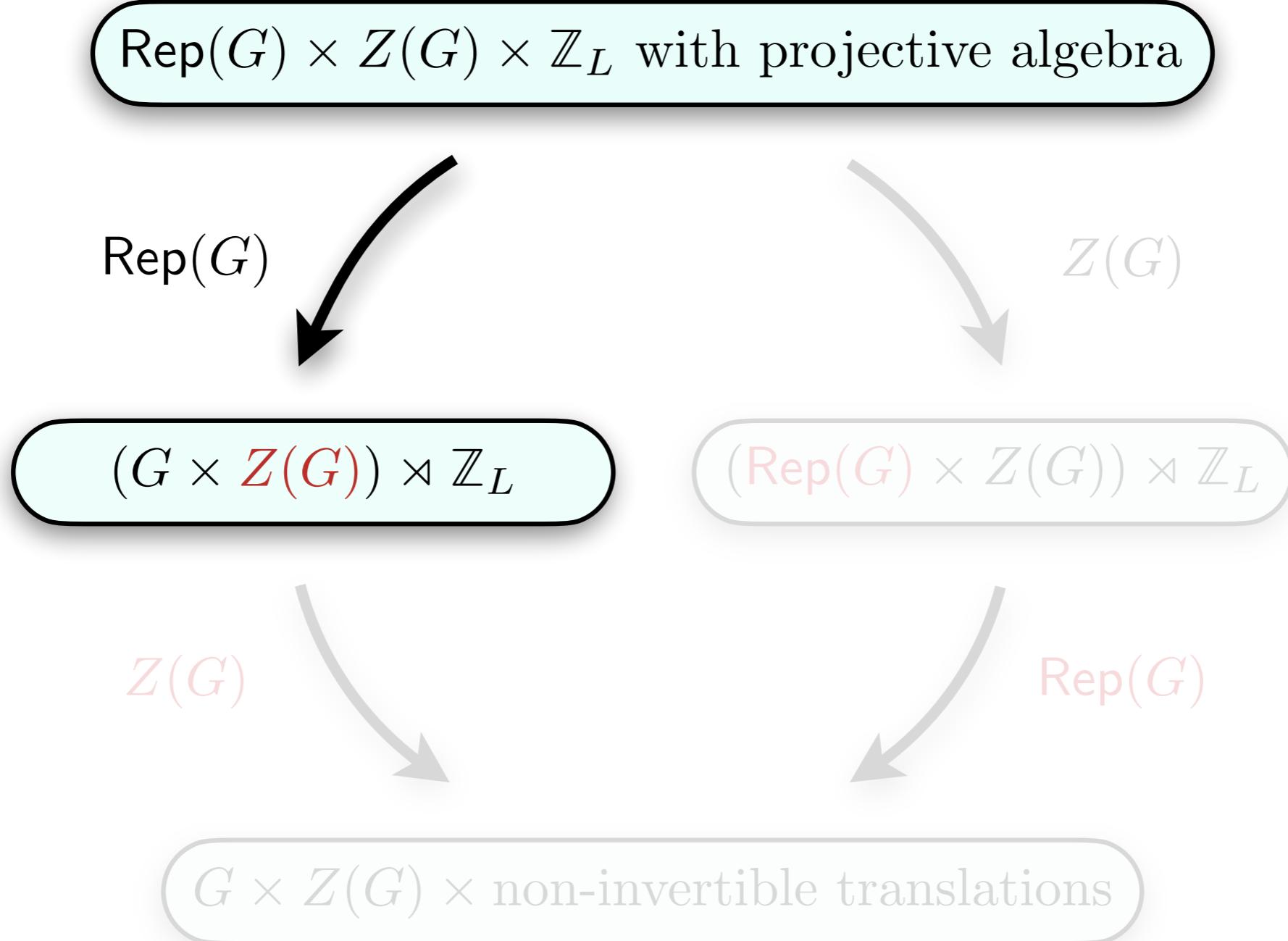
Dual $Z(G)$ symmetry

$$U_\rho^\vee = \prod_j \mathcal{Z}_{j,j+1}^{(\rho)}$$

$\text{Rep}(G)$ symmetry becomes

$$R_\Gamma = \text{Tr} \left(\prod_{j=1}^L Z_j^{(\Gamma)} [\mathcal{Z}_{j,j+1}^{(\rho_\Gamma)}]^{-j} \right)$$

GAUGING UNIFORM $\text{Rep}(G)$



GAUGING UNIFORM $\text{Rep}(G)$

To gauge $\text{Rep}(G)$, we add G -qudits on links and enforce the matrix product operator Gauss laws

$$[G_j^{(\Gamma)}]_{\alpha\beta} = [\mathcal{Z}_{j-1,j}^{(\Gamma)} Z_j^{(\Gamma)} \mathcal{Z}_{j,j+1}^{(\Gamma)\dagger}]_{\alpha\beta} = \delta_{\alpha,\beta}$$

- Equivalent to requiring $g_j = \bar{g}_{j-1,j} g_{j,j+1}$
- Trivializes the $\text{Rep}(G)$ symmetry operator $R_\Gamma = \text{Tr}\left(\prod_{j=1}^L Z_j^{(\Gamma)}\right)$

Minimal coupling leads to the $\text{Rep}(G)$ -gauged model

$$H_{XY/\text{Rep}(G)} = \sum_{j=1}^L \left(\sum_{\Gamma} J_{\Gamma} \text{Tr} \left(Z_j^{(\Gamma)\dagger} Z_{j+1}^{(\Gamma)} \right) + \sum_g K_g \overleftarrow{X}_j^{(g)} \overleftarrow{\mathcal{X}}_{j,j+1}^{(g)} \overrightarrow{X}_{j+1}^{(g)} \right) + \text{hc}$$

GAUGING UNIFORM $\text{Rep}(G)$

To find the dual symmetry, it is useful to perform the **unitary transformation**

$$Z_j^{(\Gamma)} \rightarrow \mathcal{Z}_{j-1,j}^{(\Gamma)\dagger} Z_j^{(\Gamma)} \mathcal{Z}_{j,j+1}^{(\Gamma)} \quad \overleftarrow{X}_j^{(g)} \overleftarrow{\mathcal{X}}_{j,j+1}^{(g)} \overrightarrow{X}_{j+1}^{(g)} \rightarrow \overleftarrow{\mathcal{X}}_{j,j+1}^{(g)}$$

- **Gauss's laws** $[Z_j^{(\Gamma)}]_{\alpha\beta} = \delta_{\alpha\beta}$ decouple original G qudits
- $H_{XY/\text{Rep}(G)} = \sum_{j=1}^L \left(\sum_{\Gamma} J_{\Gamma} \text{Tr} \left(\mathcal{Z}_{j,j+1}^{(\Gamma)\dagger} \mathcal{Z}_{j-1,j}^{(\Gamma)} \mathcal{Z}_{j,j+1}^{(\Gamma)\dagger} \mathcal{Z}_{j+1,j+2}^{(\Gamma)} \right) + \sum_g K_g \overleftarrow{\mathcal{X}}_{j,j+1}^{(g)} \right) + \text{hc}$

$Z(G)$ symmetry becomes

$$U_z = \prod_j [\overrightarrow{\mathcal{X}}_{j,j+1}^{(z)}]^j$$

Dual G symmetry

$$R_g^{\vee} = \prod_j \overrightarrow{\mathcal{X}}_{j,j+1}^{(g)}$$

GAUGING UNIFORM $\text{Rep}(G)$

To find the dual symmetry it is useful to perform the **unitary transformation** $Z(G)$ is a **modulated symmetry**

$$Z_j^{(\Gamma)} \rightarrow$$

$$T U_z T^\dagger = [R_z^\vee]^\dagger U_z$$

$$\xleftarrow{\quad} \mathcal{X}_{j,j+1}^{(g)}$$

- Gauss's law
- \mathbb{Z}_L extended by $Z(G) \times G$

$$\gg H_{XY/\text{Rep}(G)} = \sum_{j=1}^L \left(\sum_{\Gamma} J_{\Gamma} \text{Tr} \left(\mathcal{Z}_{j,j+1}^{(\Gamma)\dagger} \mathcal{Z}_{j-1,j}^{(\Gamma)} \mathcal{Z}_{j,j+1}^{(\Gamma)\dagger} \mathcal{Z}_{j+1,j+2}^{(\Gamma)} \right) + \sum_g K_g \mathcal{X}_{j,j+1}^{(g)} \right) + \text{hc}$$

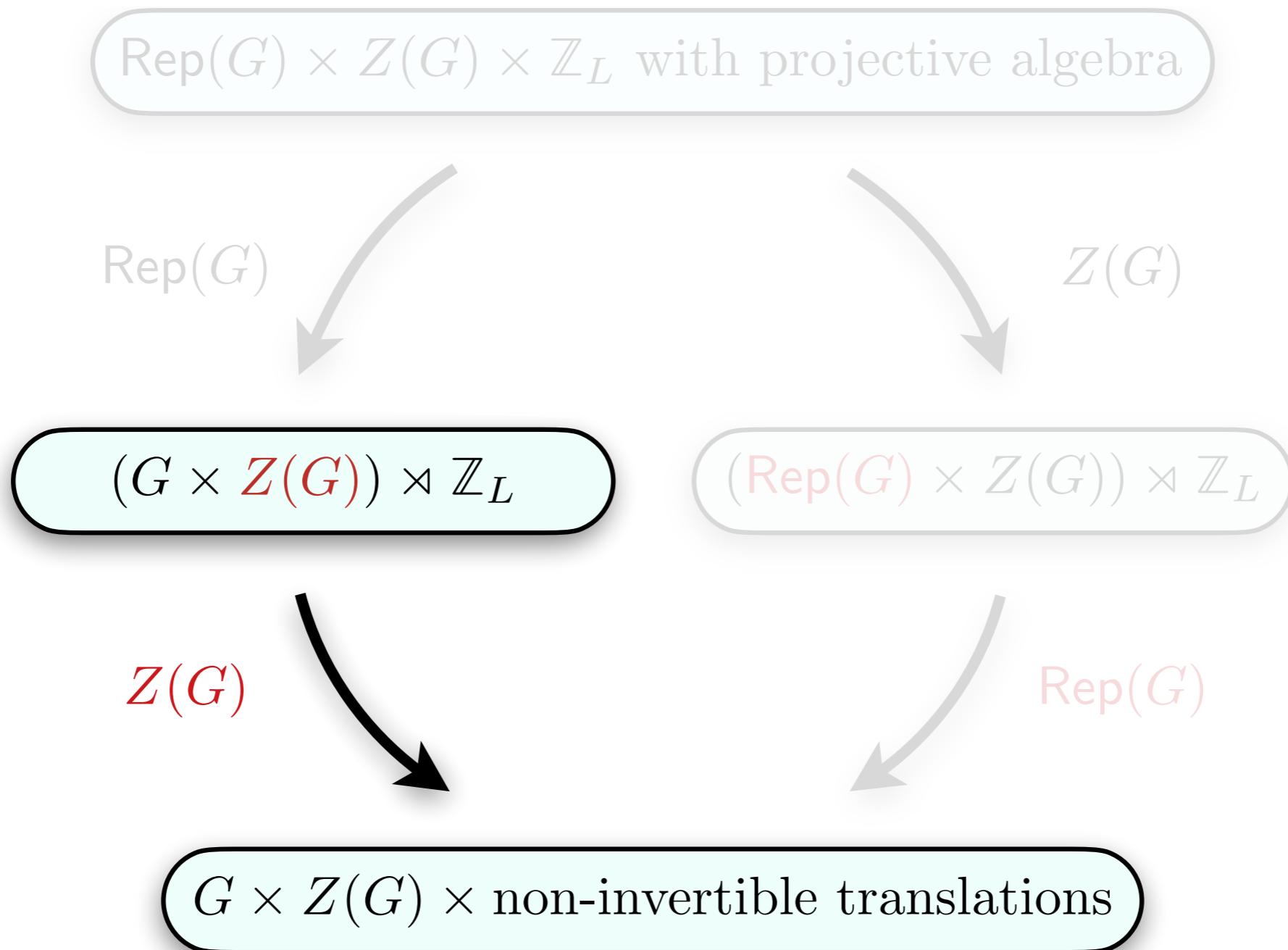
$Z(G)$ symmetry becomes

$$U_z = \prod_j [\vec{\mathcal{X}}_{j,j+1}^{(z)}]^j$$

Dual G symmetry

$$R_g^\vee = \prod_j \vec{\mathcal{X}}_{j,j+1}^{(g)}$$

GAUGING MODULATED $Z(G)$



GAUGING MODULATED $Z(G)$

We can **gauge** the modulated $Z(G)$ symmetry $U_z = \prod_j [\vec{\mathcal{X}}_{j,j+1}^{(z)}]^j$ using $Z(G)$ -qudits and the **Gauss's laws**

$$G_j^{(z)} = \overleftarrow{X}_j^{(z)} [\vec{\mathcal{X}}_{j,j+1}^{(z)}]^j \overrightarrow{X}_{j+1}^{(z)} = 1$$

- Dual $G \times Z(G)$ symmetry $R_g^\vee = \prod_j \vec{\mathcal{X}}_{j,j+1}^{(g)}$ and $U_\rho^\vee = \prod_j Z_j^{(\rho)}$

GAUGING MODULATED $Z(G)$

We can **gauge** the modulated $Z(G)$ symmetry $U_z = \prod_j [\vec{\mathcal{X}}_{j,j+1}^{(z)}]^j$ using $Z(G)$ -qudits and the **Gauss's laws**

$$G_j^{(z)} = \overleftarrow{X}_j^{(z)} [\vec{\mathcal{X}}_{j,j+1}^{(z)}]^j \overrightarrow{X}_{j+1}^{(z)} = 1$$

- Dual $G \times Z(G)$ symmetry $R_g^\vee = \prod_j \vec{\mathcal{X}}_{j,j+1}^{(g)}$ and $U_\rho^\vee = \prod_j Z_j^{(\rho)}$

This gauging explicitly breaks translations: $T G_j^{(z)} T^\dagger \neq G_{j+1}^{(z)}$

- There is a new **non-invertible translation symmetry**

$$\mathsf{D}_T = \mathsf{D} T$$

where, for instance, $\mathsf{D}: \overleftarrow{X}_j^{(z)} \overrightarrow{X}_{j+1}^{(z)} \rightarrow \overleftarrow{X}_j^{(z)} \vec{\mathcal{X}}_{j,j+1}^{(z)} \overrightarrow{X}_{j+1}^{(z)}$

THE SYMMETRY TFT

A discrete gauging web in 1+1D can be formulated through a 2+1D topological theory called **the SymTFT** [Sakura's, Paul's, Tian's talks]

[... ; Gaiotto, Kapustin, Seiberg, Willet (2014); Kong, Wen, Zheng (2015), Freed, Teleman (2018); Ji, Wen (2019); Lichtman, Thorngren, Lindner, Stern, Berg (2020); Kong, Lan, Wen, Zhang, Zheng (2020); Gaiotto, Kulp (2020); Aasen, Fendley, Mong (2020); Apruzzi, Bonetti, Etxebarria, Hosseini, Schafer-Nameki (2021); Chatterjee, Wen (2022); ...]

THE SYMMETRY TFT

•
•
•

Gaiotto, Kapustin, Seiberg, Willet (2014);

Kong, Wen, Zheng (2015);

Freed, Teleman (2018);

Ji, Wen (2019);

Lichtman, Thorngren, Lindner, Stern, Berg (2020); Kong, Lan, Wen, Zhang, Zheng (2020); Gaiotto, Kulp (2020); Aasen, Fendley, Mong (2020)

Apruzzi, Bonetti, Etxebarria, Hosseini, Schafer-Nameki (2021);

Chatterjee, Wen (2022); Apruzzi (2022); Chatterjee, Wen (2022); Moradi, Moosavian, Tiwari (2022); Freed, Moore, Teleman (2022); Kaidi, Ohmori, Zheng (2022); Chatterjee, Ji, Wen (2022);

Kaidi, Nardoni, Zafrir, Zheng (2023); Zhang, Córdova (2023); Lan, Zhou (2023); Bhardwaj, Schafer-Nameki (2023); Chen, Cui, Haghighe, Wang (2023); Apruzzi, Bonetti, Gould, Schafer-Nameki (2023); Bah, Leung, Waddleton (2023); Córdova, Hsin, Zhang (2023); Cao, Jia (2023); **SP** (2023); Baume, Heckman, Hübner, Torres, Turner, Yu (2023); Huang, Cheng (2023); Wen, Potter (2023); Inamura, Wen (2023); Schuster, Tantivasadakarn, Vishwanath, Yao (2023); Bhardwaj, Bottini, Pajer, Schafer-Nameki (2023); **SP**, Zhu, Beaudry, Wen (2023); Motamarri, McLauchlan, Béri (2023);

Brennan, Sun (2024); Antinucci, Benini (2024); Bonetti, Del Zotto, Minasian (2024); Apruzzi, Bedogna, Dondi (2024); Del Zotto, Nadir Meynet, Moscrop (2024); Bhardaj, Pajer, Schafer-Nameki, Warman (2024); Argurio, Benini, Bertolini, Galati, Niro (2024); Wen, Ye, Potter (2024); Franco, Yu (2024); Putrov, Radhakrishnan (2024); Chatterjee, Aksoy, Wen (2024); Bhardwaj, Bottini, Schafer-Nameki, Tiwari (2024); Arbalestrier, Arguio, Tizzano (2024); Huang (2024); Bhardwaj, Inamura, Tiwari (2024); Hasan, Meynet, Migliorati (2024); Nardoni, Sacchi, Sela, Zafrir, Zheng (2024); Heckman, Hübner (2024); Ji, Chen (2024); Antinucci, Benini, Rizi (2024); Copetti (2024); Bhardaj, Pajer, Schafer-Nameki, Tiwari, Warman, Wu (2024)

•
•
•

THE SYMMETRY TFT

A discrete **gauging web** in 1+1D can be formulated through a 2+1D topological theory called **the SymTFT** [Sakura's, Paul's, Tian's talks]

[... ; Gaiotto, Kapustin, Seiberg, Willet (2014); Kong, Wen, Zheng (2015), Freed, Teleman (2018); Ji, Wen (2019); Lichtman, Thorngren, Lindner, Stern, Berg (2020); Kong, Lan, Wen, Zhang, Zheng (2020); Gaiotto, Kulp (2020); Aasen, Fendley, Mong (2020); Apruzzi, Bonetti, Etxebarria, Hosseini, Schafer-Nameki (2021); Chatterjee, Wen (2022); ...]

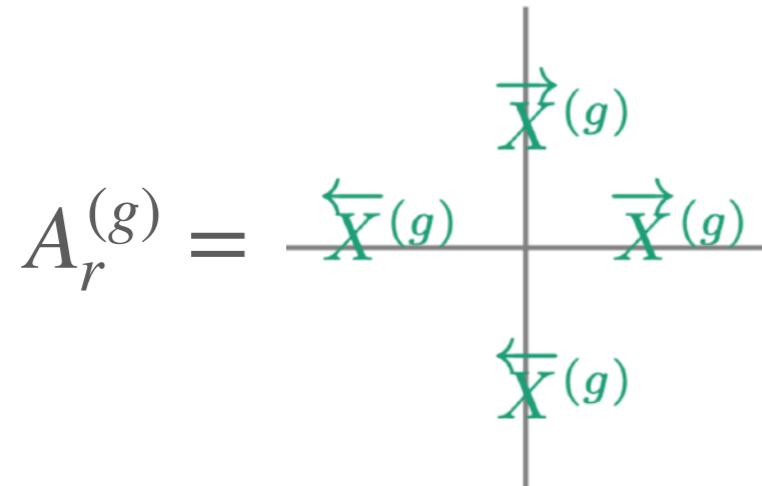
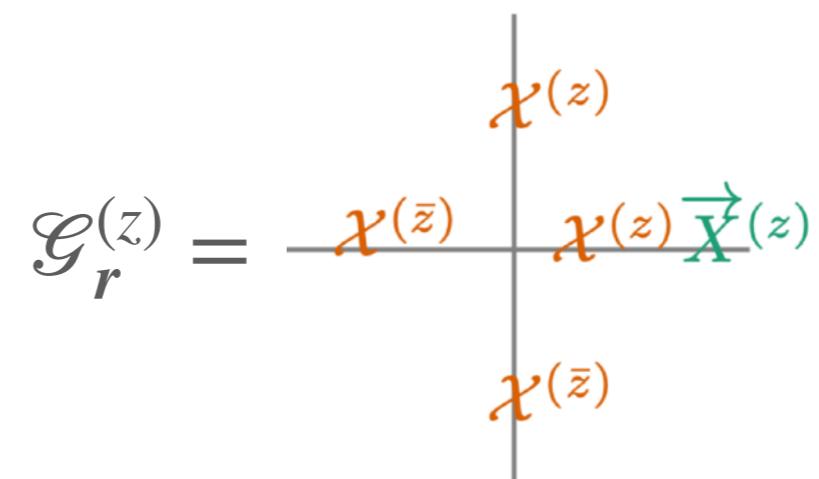
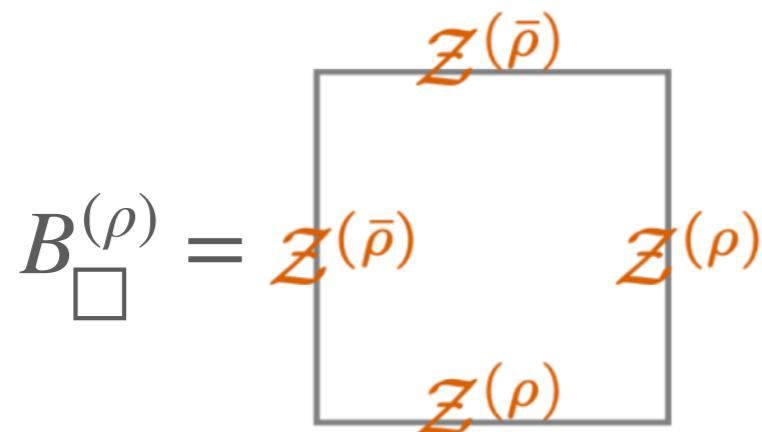
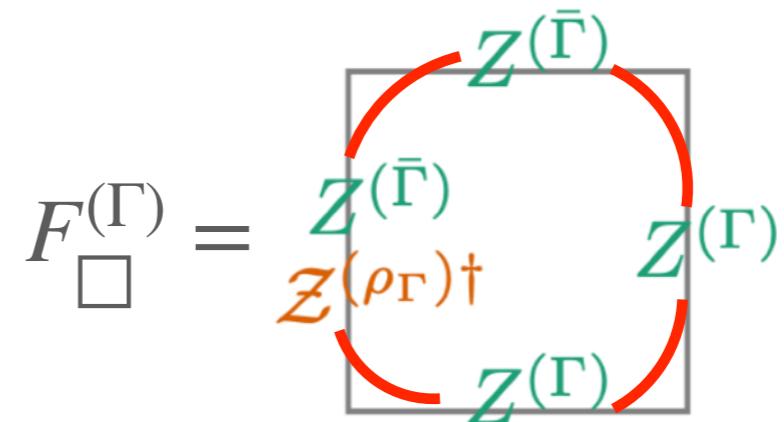
Can construct **the SymTFT** by extending the $(G \times Z(G)) \rtimes \mathbb{Z}_L$ symmetry to 2+1D and **gauging** the internal sub-symmetry

- **SymTFT** is $G \times Z(G)$ gauge theory enriched by \mathbb{Z}_L lattice translations in only one direction (a spacetime **SET**)
- Can formulate as **a quantum code** made up $G \times Z(G)$ qudits on edges of a square lattice

SYMTFT AS A QUANTUM CODE

Code space is $\mathcal{V} = \text{Span}_{\mathbb{C}} \left\{ |\psi\rangle \in \otimes_e \mathbb{C}^{|G \times Z(G)|} \mid \mathbb{A}_r = \mathbb{G}_r = \mathbb{B}_{\square} = \mathbb{F}_{\square} = 1 \right\}$

with $\mathbb{A}_r = \frac{1}{|G|} \sum_g A_r^{(g)}$, $\mathbb{G}_r = \frac{1}{|Z(G)|} \sum_z \mathcal{G}_r^{(z)}$, $\mathbb{B}_{\square} = \frac{1}{|Z(G)|} \sum_{\rho} B_{\square}^{(\rho)}$ and $\mathbb{F}_{\square} = \frac{1}{|G|} \sum_{\Gamma} d_{\Gamma} F_{\square}^{(\Gamma)}$



SYMTFT AS A QUANTUM CODE

Code space is $\mathcal{V} = \text{Span}_{\mathbb{C}} \left\{ |\psi\rangle \in \otimes_e \mathbb{C}^{|G \times Z(G)|} \mid \mathbb{A}_r = \mathbb{G}_r = \mathbb{B}_{\square} = \mathbb{F}_{\square} = 1 \right\}$

with $\mathbb{A}_r = \mathbb{G}_r = \mathbb{B}_{\square} = \mathbb{F}_{\square} = 1$

This **code space** corresponds to a **foliated field theory**,

not a TFT

- Has discrete translation symmetry that acts as an anyon automorphism

- $G = \mathbb{Z}_N$: $S[e_x^{(1)}] = \frac{iN}{2\pi} \int A^{(1)} da^{(1)} + B^{(1)} db^{(1)} + A^{(1)} B^{(1)} e_x^{(1)}$
($e_x^{(1)} = \Lambda dx$)

[see Ho Tat's Symmetries 2024 talk]

$$B_{\square}^{(\rho)} = \mathcal{Z}^{(\bar{\rho})} \quad \mathcal{Z}^{(\rho)} \quad \mathcal{Z}^{(\rho)}$$

$$F_{\square}^{(\Gamma)} = \mathcal{Z}^{(\bar{\Gamma})} \quad \mathcal{Z}^{(\rho_{\Gamma})\dagger} \quad \mathcal{Z}^{(\Gamma)} \quad \mathcal{Z}^{(\Gamma)}$$

GAUGING WEB IN THE SYMTFT

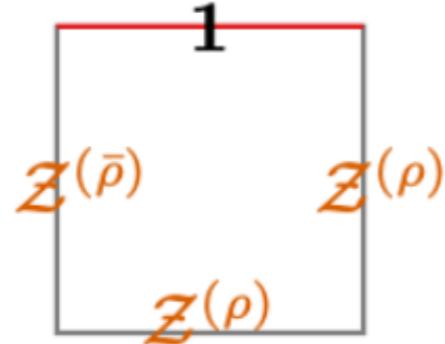
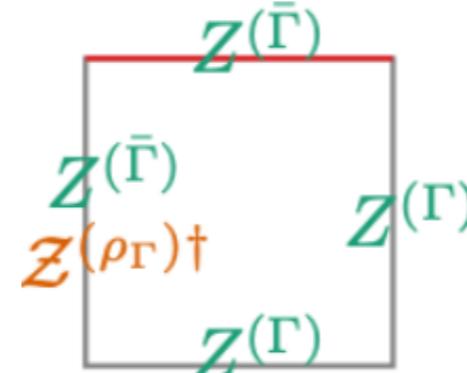
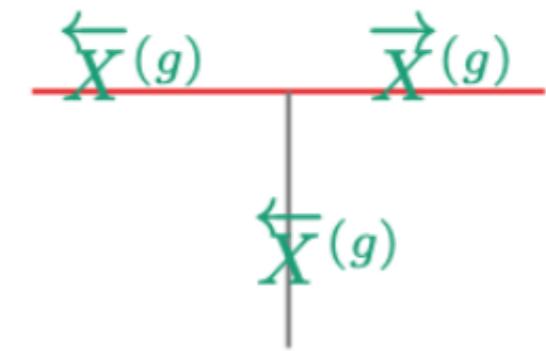
Different symmetries in the **gauging web** correspond to
different gapped boundaries of **the SymTFT**

GAUGING WEB IN THE SYMTFT

Different symmetries in the **gauging web** correspond to different gapped boundaries of **the SymTFT**

$\text{Rep}(G) \times Z(G) \times \mathbb{Z}_L$ with projective algebra

- A smooth (rough) boundary for G ($Z(G)$) qudits



- Boundary symmetry operators

$$R_\Gamma = \text{Tr} \left(\prod_{j=1}^{L_x} Z_{(j, L_y), x}^{(\Gamma)} \right)$$

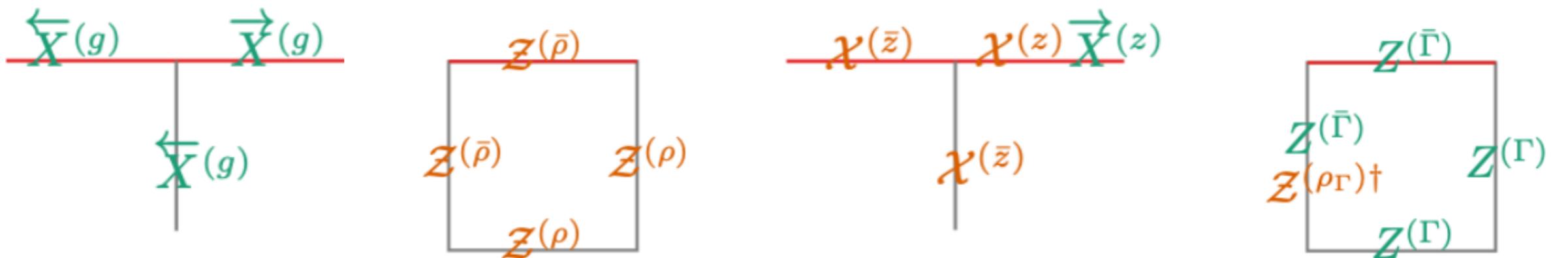
$$U_z = \prod_{j=1}^{L_x} \overrightarrow{X}_{(j, L_y), x}^{(z)} \overleftarrow{X}_{(j, L_y - 1), y}^{(z)}$$

GAUGING WEB IN THE SYMTFT

Different symmetries in the **gauging web** correspond to different gapped boundaries of **the SymTFT**

$$(\mathbf{Rep}(G) \times Z(G)) \rtimes \mathbb{Z}_L$$

- A smooth (smooth) boundary for G ($Z(G)$) qudits



- Boundary symmetry operators

$$R_\Gamma = \text{Tr} \left(\prod_{j=1}^{L_x} Z_{(j, L_y), x}^{(\Gamma)} \left[\mathcal{Z}_{(j, L_y), x}^{(\rho_\Gamma)} \right]^{-j} \right)$$

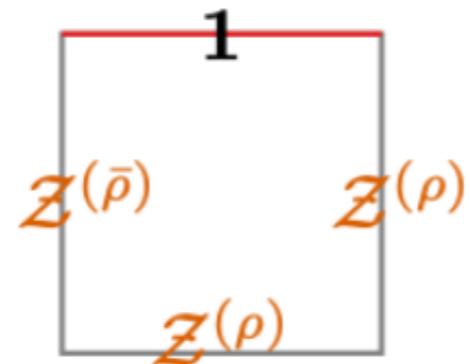
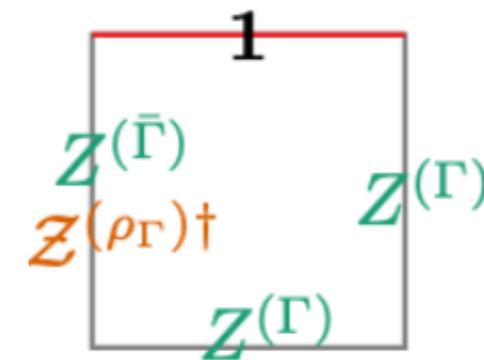
$$U_\rho^\vee = \prod_{j=1}^{L_x} \mathcal{Z}_{(j, L_y), x}^{(\rho_\Gamma)^\dagger}$$

GAUGING WEB IN THE SYMTFT

Different symmetries in the **gauging web** correspond to different gapped boundaries of **the SymTFT**

$$(G \times Z(G)) \rtimes \mathbb{Z}_L$$

- A rough (rough) boundary for G ($Z(G)$) qudits



- Boundary symmetry operators

$$R_g^\vee = \prod_{j=1}^{L_x} \overleftarrow{X}_{(j, L_y - 1), y}^{(g)}$$

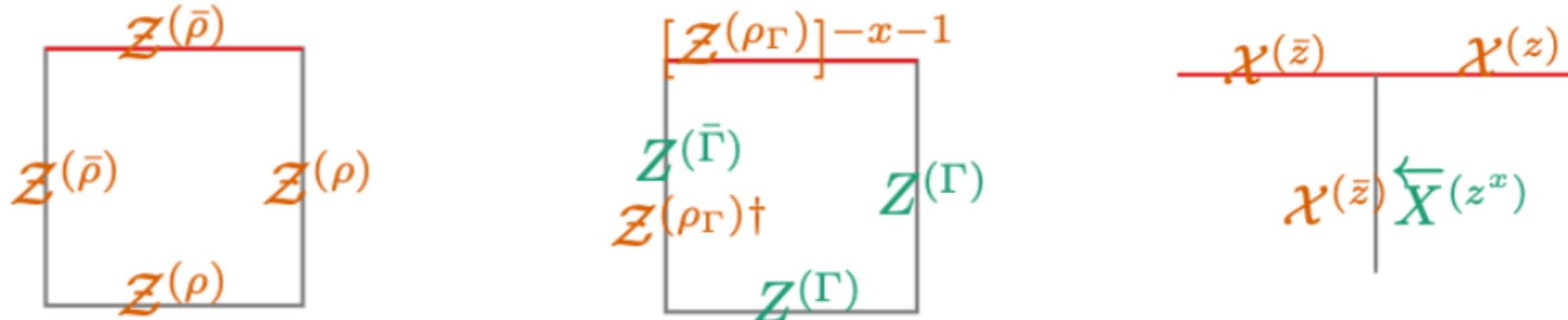
$$U_z = \prod_{j=1}^{L_x} \overleftarrow{\mathcal{X}}_{(j, L_y - 1), y}^{(z)} [\overleftarrow{X}_{(j, L_y - 1), y}^{(z)}]^j$$

GAUGING WEB IN THE SYMTFT

Different symmetries in the **gauging web** correspond to different gapped boundaries of **the SymTFT**

$G \times Z(G) \times \text{non-invertible translations}$

- A rough (smooth) boundary for G ($Z(G)$) qudits



- Boundary symmetry operators

$$R_g^\vee = \prod_{j=1}^{L_x} \overleftarrow{X}_{(j, L_y - 1), y}^{(g)}$$

$$U_\rho^\vee = \prod_{j=1}^{L_x} \mathcal{Z}_{(j, L_y), x}^{(\rho)}$$

*Non-invertible
translations*

OUTLOOK

We explored how **generalized symmetries** and **crystalline symmetries** interplay in quantum lattice models of G -qudits

1. Generalized and crystalline symmetries with projective algebras
2. Non-invertible weak SPTs
3. Non-invertible dipole and translation symmetries

This is just the tip of the iceberg!