

Symmetry-enforced Fermi Surfaces

Based on arXiv:25(next week) w Luke Kim and Shu-Heng Shao

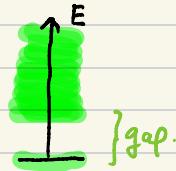
- 1) Anomalies and Sym. enforced gaplessness
- 2) Sym-enforced Fermi Surfaces
- 3) Generalized Onsager Sym.

Landscape of quantum phases

Phases of quantum Many-body Systems come in two flavors
(distinguished by many-body energy spectrum)

- 1) gapped phases:

- Finite energy-gap between GS and 1st excited state
(In thermodynamic limit)



- Well understood, rich variety:

discrete SSB, SPT, Topological order, Fractons
(Both TQFT and beyond TQFT gapped phases)

- 2) gapless phases:

- No gap between GS and excited states
(In thermodynamic limit)

(much less understood than gapped counterparts)

- Not all gaplessness is equal

# gapless Modes	Example	Spectrum
finite	goldstone bosons	
∞	Fermi surfaces (FS)	

Interesting to identify constraints that forbid gapped phases

Sym-enforced gaplessness

Recall: anomalous symmetries forbid trivial gapped phases

- Compatible with SSB, topological/fractional order, gaplessness

Some anomalies are even stronger: Sym-enforced gaplessness

- Compatible with SSB or gaplessness

\Rightarrow guaranteed gapless if sym-preserved

- Examples:

1) Wang-Senthil $(SU(2) \times \mathbb{Z}_4^T) / \mathbb{Z}_2$ anomaly

Wang, Senthil 2014

2) Witten's $SU(2)$ anomaly

Garcia-Etxebarria et al 2017

} Can have gapped SSB phase

} No allowed gapped phases

Known examples compatible w/ finite and ∞ # gapless modes

- What about Sym-enforced " ∞ -gaplessness"?

Sym-enforced FS?

Set up

(2+1)D Quantum lattice model w spatial $L_x \times L_y$ square lattice and cont. time.

(Warning: Working all within timeslice of spacetime)

- Lattice Vectors $r = n_x \hat{x} + n_y \hat{y}$ w $n_i \in \mathbb{Z}$ and $n_i \sim n_i + L$.
- One complex fermion per site: fermionic creation/annihilation ops

$$\{c_r^\dagger, c_{r'}\} = \delta_{r,r'} \quad \{c_r, c_{r'}\} = 0$$

- Local Hamiltonian $H = \sum_r H_r$

Goal: find operators $\{U_g \mid g \in G\}$ s.t.

1) U_g is a unitary G sym op: $U_g U_h = U_{gh}$, $g, h \in G$.

2) $[U_g, H] = 0 \Rightarrow H \text{ always has a FS}$

- Sufficient but not necessary cond. for a FS.

Symmetries

Symmetry must forbid all terms that can destroy a FS.

e.g.) - Chemical potential term $-\mu \sum_r n_r$ ($n_r = c_r^\dagger c_r$)

- Pairing terms: $\sum_{\langle r, r' \rangle} (\Delta c_r c_{r'} + h.c.)$

- Density-density interactions: $\sum_{\langle r, r' \rangle} n_r n_{r'}$

An obvious sym: U(1) w charge $Q = \sum_r (n_r - 1/2)$

$$e^{i\theta Q} c_r e^{-i\theta Q} = e^{-i\theta} c_r$$

↳ assume $h \& b$ even.

→ rules out pairing term

How to forbid the other terms?

Real/Majorana fermion operators

$$a_r = c_r^+ + c_r, \quad b_r = i(c_r^+ - c_r).$$

$$a_r^\dagger = a_r \quad b_r^\dagger = b_r \quad \{a_r, b_{r'}\} = 0$$

$$\{a_r, a_{r'}\} = \{b_r, b_{r'}\} = 2\delta_{r,r'}$$

$$\rightarrow n_r = \frac{1}{2}a_r b_r + \frac{1}{2} \Rightarrow \text{try to decouple } a_r \text{ and } b_r$$

Majorana translation sym

$$T_v^{(b)} \begin{pmatrix} a_r \\ b_r \end{pmatrix} T_v^{(b)\dagger} = \begin{pmatrix} a_r \\ b_{r+v} \end{pmatrix}$$

→ due to locality, causes a and b Majoranas to decouple:

$$H = H(a) + H(b)$$

$$\rightarrow T_v^{(b)} c_r T_v^{(b)\dagger} = \frac{1}{2} (c_r^+ + c_r - c_{r+v}^+ + c_{r+v})$$

Enforcing these sym requires:

H commutes w Q , $T_x^{(b)}$, and $T_y^{(b)}$

Can show most general sym local Hamiltonian is

$$H = \sum_{\text{all}} \sum_{\text{finite}} i g_v c_r^+ c_{r+v} \quad (g_{-v} = -g_v \in \mathbb{R})$$

→ Sym enforces free fermions.

$$c_K = \frac{1}{\sqrt{N_{\text{sites}}}} \sum_r e^{-ikr} c_r$$

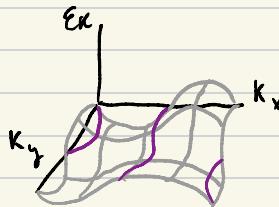
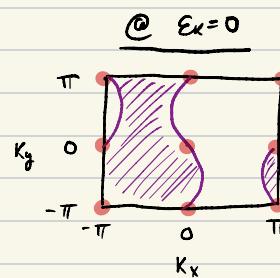
→ In momentum space $H = \sum_{K \in BZ} \epsilon_K c_K^\dagger c_K$ where $\epsilon_K = -2 \sum_v g_v \sin(K \cdot v)$

$$\Rightarrow \text{ground state: } c_K^\dagger c_K |gs\rangle = \delta_{\epsilon_K < 0} |gs\rangle$$

⇒ FS is a 1-dim locus where $\epsilon_K = 0$.

e.g.) $H = -\frac{i}{2} \sum_r (c_r^\dagger c_{r+\hat{x}} + \frac{3}{4} c_r^\dagger c_{r+\hat{y}}) + \text{h.c.}$

$$\epsilon_K = \sin(K_x) + \frac{3}{4} \sin(K_y)$$



Dispersion satisfies $\epsilon_{-K} = -\epsilon_K$:

1) H always has a FS (follows from intermediate value theorem)

2) half-filling $\Rightarrow Q |gs\rangle = 0$

3) Generic FS always topologically non-trivial

→ Each point $K \equiv -K$ lies on a non-contractible component of the FS

Sym-enforced FS from $U(1)$ and Maj translations

UV Sym group $U(1) \times Maj$ transl.

Q and $T_v^{(b)}$ do not commute:

$$T_v^{(b)} Q T_v^{(b)\dagger} = \frac{i}{2} \sum_r a_r b_{r+v} \equiv Q_v$$

$$[Q_v, Q_{v'}] = i G_{v-v'} \quad \text{where} \quad G_v = \frac{i}{2} \sum_r (a_r a_{r+v} - b_r b_{r+v})$$

$$[G_v, G_{v'}] = 0$$

$$[Q_v, G_{v'}] = 2i (Q_{v-v'} - Q_{v+v'})$$

→ Span{ Q_v, G_v } forms $O(N_{\text{sites}})$ dim. Lie algebra

→ Has Onsager Subalgebras, e.g., Span{ $Q_{n\hat{x}}, G_{n\hat{x}}$ }.

Vernier, O'Brien, Fendley 2018, Chatterjee, SP, Shao 2024

Full Sym group $\text{Ons}_2 \times (\mathbb{Z}_{L_x} \times \mathbb{Z}_{L_y})$

↳ generalized Onsager Sym

Includes transformation $C_K \mapsto e^{-i f(K)} C_K$ w $f(K) = f(-K)$

→ Sym op $e^{i \sum_K f(K) Q_K}$ w $Q_K = \frac{2}{N_{\text{sites}}} \sum_v \cos(K \cdot v) Q_v$

→ Anomaly-free: commutes w $H = -\mu \sum_r n_r$

→ For $K \in \mathcal{F}$, this is a subgroup of the $LU(1)$ Sym from Else, Thorngren, Senthil 2020

Summary

$U(1) + \text{Maj translation} = \text{Ons}_2 \times \text{transl} \Rightarrow \text{Fermi Surface}$

→ discussed square lattice, but applies to and d-dim Bravais lattice

Follow-up questions:

- Stability to ancillas?

- anomaly Matching of $LU(1)$?
- what about codim-p Fermi Surfaces?