SPT-LSM theorems from projective

non-invertible symmetry

Salvatore Pace
MIT

KITP Generalized Symmetry Workshop

Hi RN

FOUNDATION




Ho Tat Lam Omer Aksoy

SP, Lam, Aksoy arXiv:2409.18113
|SciPost Phys. 18, 028 (2025)]



A fundamental problem in CMT /QFT /Math-ph is to

understand quantum phases™
1. How do we diagnose different quantum phases?

2. What are the allowed possible quantum phases?

*In this talk, phase = IR phase



A fundamental problem in CMT /QFT /Math-ph is to

understand quantum phases™

1. How do we diagnose different quantum phases?
2. What are the allowed possible quantum phases?
Sometimes, phases are characterized by a symmetry
» Superfluids by U(1) boson number conservation

» Topological insulators by U(l)f and time-reversal

For such phases, symmetries provide answers to questions (1)

and (2).

*In this talk, phase = IR phase



Which quantum phases are characterized by

ceneralized symmetries?



Which quantum phases are characterized by

ceneralized symmetries?

A systematic approach:
(1) Choose your generalized symmetries adjectives
a—a,—az—-++ dymietry

(2) Specify SSB and SPT pattern (e.g. a SymTFT interface)



Which quantum phases are characterized by

ceneralized symmetries?

A systematic approach:
(1) Choose your generalized symmetries adjectives
a;—a,—az—-++ dyminetry
(2) Specify SSB and SPT pattern (e.g. a SymTFT interface)
Ordered phases Topological insulators
Topological order  Mazwell phases  Higgs phases  Fracton phases

Phases we have yet to name!



Which quantum phases are characterized by
ceneralized symmetries?

Why care?

1. Provides a novel and unifying perspective of quantum

phases
2. Guides us towards new quantum phases and models

3. Further develops a classification of quantum phases based
on symmetries (“generalized /categorical Landau

paradigm”)



Which quantum phases are characterized by

ceneralized symmetries?

2. Guides us towards new quantum phases and models



Which quantum phases are characterized by

ceneralized symmetries?

We are making incredible progress!

[Albert, Aksoy, Atinucci, Barkeshli, Bhardwaj, Bottini, Burnell, Cao, Chatterjee, Chen, Cheng, Choi, Copetti,
Cordova, Delcamp, Delfino, Devakul, Dua, Dumitrescu, Eck, Fechisin, Fendley, Gai, Gaiotto, Garre-Rubio,
Gorantla, Gu, Han, Hsin, Huang, Inamura, Ji, Jia, Jian, Kapustin, Kobayashi, Kong, Lake, Lam, Lan, Lee, Li,
Litvinov, Liu, Lootens, Ma, Meng, Molnar, Myerson-Jain, Nandkishore, Oh, Ohmori, Pajer, Pichler, Rayhaun,
Sanghavi, Schafer-Nameki, Seiberg, Seifnashri, Shao, Sondhi, Stahl, Stephen, Tantivasadakarn, Thorngren,
Tiwari, Tsui, Ueda, Verresen, Verstraete, Vijay, Wang, Warman, Wen, Willet, Williamson, Wu, Xu, Yamazaki,

Yang, Yang, Yoshida, Zhang, Zheng, ---]

Here: focus on beyond-relativistic-QFT-symmetries




This talk: 1+ 1D SPT phases characterized by lattice

translations and non-invertible symmetries

» Find a new class of entangled weak SPTs characterized by

projective non-invertible symmetries on the lattice



This talk: 1+ 1D SPT phases characterized by lattice

translations and non-invertible symmetries

» Find a new class of entangled weak SPTs characterized by

projective non-invertible symmetries on the lattice

Outline

1. Review SPTs from a symmetry defect perspective

2. Simple example of an entangled weak SPT characterized

by a projective non-invertible symmetry

3. General discussion on projective Z(G) X Rep(G) symmetry
and SPT-LSM theorems



What are SPTs

An SPT phase is a gapped quantum phase protected by a
symmetry with a unique ground state on all closed spatial

maﬂifOIdS [Chen, Gu, Liu, Wen ’11; -]

» Interesting physics often arise on boundaries and interfaces

between SPTs (e.g., topological order, gapless excitations)
SPTs are characterized by their bulk response to static probes

» Background gauge fields and symmetry defects



What are SPTs

An SPT phase is a gapped quantum phase protected by a
symmetry with a unique ground state on all closed spatial

maﬂifOIdS [Chen, Gu, Liu, Wen ‘11; -]

» Interesting physics often arise on boundaries and interfaces

between SPTs (e.g., topological order, gapless excitations)
SPTs are characterized by their bulk response to static probes
» Background gauge fields and symmetry defects

Ordinary insulator Topological insulator

|Qi, Hughes, Zhang ’08; ---]
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Symmetry defects are localized modifications to the

Hamiltonian Héezf)ect = H+ 6H(X) and other operators

» Moved using unitary operators (are topological defects)

() _ (Z) g7t
Hdefzect o UZlHdeflectUZI

» Implement the symmetry transformation across space

Space 2 2,  Space

cfi)

» Twisted boundary conditions (T,)" = Symmetry operator



» Implement the symmetry transtormation across space

Space % 2,  Space

; U, 0 1
C ) c C

» Twisted boundary conditions (T,)" = Symmetry operator



1d closed chain in space with two qubits on each site j ~j+ L

acted on by Pauli operators X;, Z; and Xj, ZJ

L L

H,=~ ) (X;+X) H.=-Y (2.1 X2+ 72X 7,,)
j=1 j=1

|GSP>=|++"'+> |GSC>=Z}—1)92]|G80>=Z])~(]Z]+1|GSC>

» Both models have a unique gapped ground state

» There is a Z, X Zz symmetry U = HX] and U = H}ZJ
with U|GS,) = U|GS,) = |GS,) j



1d closed chain in space with two qubits on each site j ~j+ L

acted on by Pauli operators X, Z; and XJ-, ZJ

L L

H,=~ ) (X;+X%) H.=- Y (2.1 X2+ 2 X Z)
j=1 j=1

|Gsp>=|++"'+> |GSC>:Z]—l)(szlGSc>:Z]Xv]Z]+1|GSC>

H, and H_ are both in a Z, X 7, SPT phase



Are H, and H, in different Z, X Z, SPT phases?

We can check by inserting a U = HX] symmetry defect

» Gives rise to U-twisted boundary conditions: Z;,;, = — Z;

1. H, is unaffected, so its ground state still satisfies
2. H.becomes H.+ 27, X; Z,, and its ground state satisfies

U|GS,.;) =+ |GS,.;) 0|GS,.p) = — |GS,.0)



Low-energy EFTs of H, and H,

ZJAAl=1  ZJA A= (-1)/Av4

Difterent responses = H,, and H, are in

different Z, X Z, SPT phases

[Chen, Lu, Vishwanath ’13; Gaiotto, Johnson-Freyd '17; Wang, Ning, Cheng 21|

1. H, is unaffected, so its ground state still satisfies
2. H.becomes H.+ 27, X; Z,, and its ground state satisfies

U|GS,.;) =+ |GS,.;) 0|GS,.p) = — |GS,.0)



1d periodic lattice with a qubit on each site j ~j+ L
Ho=-YX vs. H=+ )X
J J

» Both have a unique gapped ground state [GSy) =®; | £ )

» Symmetries: Z, X Z; with U = HX] and T:j —j+1
J

H_ and H_ are both in Z, X Z; SP'T' phases



1d periodic lattice with a qubit on each site j ~j+ L
Ho=-YX vs. H =+ )X
J J

» Both have a unique gapped ground state |GS,) = ®; | + )

» Symmetries: Z, X Z, with U= | X. and T:j—>j+ 1
2 L ]
J

H_ and H_ are both in Z, X Z; SP'T' phases

SPTs characterized G X translations are called weak G SP'Is

H_and H_ are both in Z, weak SP'T phases



Are H, and H_ in different Z, weak SP'T' phases?

Let’s insert a U = HX] symmetry defect at (L,1)
J

» Neither H, or H_ are modified by Z,,; = — Z

» Translation operator becomes T = X; Ty tooifree (I = U)



Are H, and H_ in different Z, weak SP'T' phases?

Let’s insert a U = HX] symmetry defect at (L,1)
J

» Neither H, or H_ are modified by Z,,; = — Z

» Translation operator becomes T = X; Ty tooifree (I = U)

Even L,
7, symmetry defect

Different Z,
T|GS.,) = +|GS,) +]GS,) weak SPTs



Are H, and H_ in different Z, weak SP'T' phases?

Let’s insert a U = HX] symmetry defect at (L,1)
J

» Neither H, or H_ are modified by Z,,; = — Z

» Translation operator becomes T = X; Ty tooifree (I = U)

Even L,
7, symmetry defect




Inserting a translation defect is done by

Th=1->T'=T —= L—>L-1

» Translation defect carries Z, symmetry charge in |GS_)

Even L,
7, symmetry defect

Odd L

Even L

U|GS,) = +£]GS.)

T|GS,) = +|GS.,) +|GS,) +|GS,)



A curious Hamiltonian

1d periodic lattice with a single qubit and Z, qudit on each

Sitej Nj + L [SP, Lam, Aksoy "24]
> ¢, 0% act on qubits: (6%)? = (69)? = 1 and 6% = — %67

> X,Z act on Z, qudits: X*=Z*=1and ZX =i XZ



A curious Hamiltonian

1d periodic lattice with a single qubit and Z, qudit on each
Sitej Nj + L [SP, Lam, Aksoy ’24]

> ¢, 0% act on qubits: (6%)? = (69)? = 1 and 6% = — %67
> X,Z act on Z, qudits: X*=Z*=1and ZX =i XZ

H= ) (Z-Z)0}(Zy = Z) -0} Cyi 0},

» Cactsas X = X and Z —» Z'

» Is a sum of commuting terms and has a unique gapped

ocround state



A curious Hamiltonian

1d periodic lattice with a single qubit and Z, qudit on each
SitG] Nj + L [SP, Lam, Aksoy ’24]

> o%, 0% act on qubits: (6% = (69 = 1 and %" = — 667
> X,Z act on Z, qudits: X*=Z*=1and ZX =i1XZ

H= ) (Z-Z)0}(Zy = Z) -0} Cyi 0},

|GS> Z ZJ ;i (@ — @;1) ®|0 — ( 1)% = — 1 ]+1>

{9;=0,1}
{a = 0,2}




H= 2 Z=2)0; % =7 ) =0/ G}

What are the symmetries of H?



H= 2 Z=2)0; % =7 ) =0/ G}

What are the symmetries of H?

» /; lattice translations T:j — j+ 1



H= ) (Z=Z)6'(Zy, - Z )= 6 Cy 0},
J

What are the symmetries of H?

» /; lattice translations T:j — j+ 1

» Three Z, symmetry operators

v=[[x  r=[ls rR=]]Z
J J J



H= 2 Z=2)0; % =7 ) =0/ G}

What are the symmetries of H?

» /; lattice translations T:j — j+ 1

» Three Z, symmetry operators
_ 2 _ _ 2
=Tl &=Tl¢  &=]I7
J J J
> & symmetry operator

RE—%(1+R1) (1+R,) HZH K
J



> W symmetry operator

R = % (1+R)) (14 Rz)HZjHJ;lUé
j



00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Rg 1s a non-invertible symmetry operator

> Rily)y=—|w) or Rly)=—y) = Rely) =0

» Rp have zero-eigenvalues = R is non-invertible

> & symmetry operator

R = % (1+R)) (1 +R2)HZJ_H’;;16£
j



A curious SPT

These symmetry operators obey
U=1, R°=1, R:=1+R +R +RR,, RgR =RR:=R:
UR: = (—1D*Rc U

» Form a (projective) Z, X Rep(Dg) symmetry™

Dihedral group of order 8 Dg =~ <I”,S | 72 = s = 1,rsr = s3>

» Four 1d reps 1, P, P,, P, =P, ® P, and one 2d irrep E

*Confirmed Rep(Dg) over other TY(D,) via gauging



A curious SPT

These symmetry operators obey
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» Form a (projective) Z, X Rep(Dg) symmetry™

Ground state satisfies:

T|GS) = + |GS) U|GS)=+|GS)  R,|GS) = + |GS)

*Confirmed Rep(Dg) over other TY(D,) via gauging



A curious SPT

These symmetry operators obey
U=1, R°=1, R:=1+R +R +RR,, RgR =RR:=R:
UR: = (—1D*Rc U

» Form a (projective) Z, X Rep(Dg) symmetry™

Ground state satisfies:

T|GS) =+ |GS) U|GS) =+ |GS) R, |GS) =+ |GS)
+|GS), L even

R,|GS) =
—|GS), L odd

*Confirmed Rep(Dyg) over other TY(D,) via gauging



A curious SPT

These symmetry operators obey
U=1, R°=1, R:=1+R +R +RR,, RgR =RR:=R:
UR: = (—1D*Rc U

» Form a (projective) Z, X Rep(Dg) symmetry™

Ground state satisfies:

T|GS) =+ |GS) U|GS) =+ |GS) R;|GS) =+ |GS)
+|GS), L 2|1GS), L

R,|GS) = ) even R.|GS) = +2 | GS) even
—|GS), L odd 0, L odd

*Confirmed Rep(Dyg) over other TY(D,) via gauging



A curious SPT

H is in a Z, X Rep(Dg) weak SPT phase

» Translation defects carry Rep(Dy)

symmetry charge in |GS)

Ground state satisfies:

T|GS) =+ |GS) U|GS) =+ |GS) R, |GS) =+ |GS)
+|GS), L even +2|GS), L even
21G5) {— GS), L odd e 1G5) {o, L odd

*Confirmed Rep(Dg) over other TY(D,) via gauging



An Rp symmetry defect can be inserted using the MPO

presentation of R

> Maps states in # =~ C3 to those in = C°Q
Defect Hamiltonian (RVH = H'""PRY)
-1
A = H+ (1 = Zyegee) 07, Cr07
» Two exactly degenerate ground states

|GS,) =]+ 1) ® |GS) |GS_)=|-1)® | GS)



E-twisted symmetry operators satisfy
T1GS,) = 1GS;)  UIGS,) ==|GS,) R |GS.) = |GS.)

+|GS,), L even
—|GS,), L odd

2|GS,.), L even
0, L odd

R,|GS,) = {

Re|GS4) :{

Defect Hamiltonian (RVH = H'""PRY)
-1
A = H+ (1 = Zyegee) 07, Cr07
» Two exactly degenerate ground states

|GS,) =]+ 1) ® |GS) |GS_)=|-1)® | GS)



This SPT' is characterized by a projective symmetry:
URr=—-R:U (odd L)

Projective unitary symmetries U,U, = e?U,U, forbid SPTs

» Assume non-degenerate symmetric ground state |GS)

1. U,U0,|GS) =|GS) } Contradicts

2. U,U,|GS) =€’ U,U,|GS) =e?|GS) ) assumption



This SPT' is characterized by a projective symmetry:
URr=—-R:U (odd L)

Projective unitary symmetries U,U, = e?U,U, forbid SPTs

» Assume non-degenerate symmetric ground state |GS)

1. U,U0,|GS) =|GS) } Contradicts

2. U,U,|GS) =€’ U,U,|GS) =e?|GS) ) assumption

Projective non-invertible symmetries are compatible with SPTs

» Loophole: symmetry operator has zero-eigenvalues

UR: = (—1)*R-U = R:|SPT) = 0 when L is odd



SPTs protected by internal invertible versus non-invertible

Symmet I’y [Thorngren, Wang ’19; Inamura '21; Fechisin, Tantivasadakarn, Albert '23; Antinucci, Bhardwaj, Bottini,
Copetti, Gai, Huang, Pajer, Schifer-Nameki, Tiwari, Warman, Wu '23-25; Seifnashri, Shao '24; Li, Litvinov
'24; Jia '24; Inamura, Ohyama '24; Meng, Yang, Lan, Gu '24; Cao, Yamazaki, Li '25; Aksoy, Wen ’25]

Properties Invertible Non-invertible
Stacking /Entanglers Yes No

Classification Cobordism Fiber functors
Edge/interface modes Yes Yes

Defect /*“strine operator”
/ g p. Yes Yes
characterization



The projective Z, X Rep(Dg) symmetry is a special case of a

projective Z(G) X Rep(G) symmetry
» Z(G) is the center of a finite group G

» Rep(G) is the fusion category of representations of G



The projective Z, X Rep(Dg) symmetry is a special case of a

projective Z(G) X Rep(G) symmetry
» Z(G) is the center of a finite group G

» Rep(G) is the fusion category of representations of G

Onsite Z(G) symmetry operator U, = H Uj(Z), with z € Z(G):

J
U.U, =U,._

i1

Rep(G) symmetry operator Ry, with I' an irrep of G:
Rra X Rrb o Z NCSI?RFC
C

» Non-invertible symmetry when G is non-Abelian



The projectivity arises through the local relation

RFZJ}(Z) = elfr@ U]@RF with e%r® = Tr[I'(z)]/ d;



The projectivity arises through the local relation

RFZJ}(Z) = elfr@ U]@RF with e%r® = Tr[I'(z)]/ d;

e.g., er® when G = 7, (Z(Z,) = Z,)




The projectivity arises through the local relation

RFIJ}(Z) = elfr@ U]@RF with e%r® = Tr[I'(z)]/ d;

e.g., %19 when G = Dy (Z(Dg) = Z,)




The projectivity arises through the local relation

RFZJ}(Z) = elfr@ U]@RF with e%r® = Tr[I'(z)]/ d;

e.g., %19 when G = Dy (Z(Dg) = Z,)

Explicit expressions of U, and R for the Hilbert space ®C|G|
J

UZ = Z |ng '",ZgL><81, °°°78L| Rp = Z Tr[I'(gy---g;)] |81» "°>8L><81» "'a8L|
{8} 18}



The local projective algebra implies RpU, = (e 7r®)- U R,

» When e'%r@ is non-trivial for a unitary Ry, this is a

manifestation of a Lieb-Schultz-Mattis (LSM) anomaly

» The LSM theorem forbids SPT phases

[Lieb, Schultz, Mattis ’61; Oshikawa ’99; Hastings ’03; ---; Chen, Gu, Wen ’10; Else, Thorngren ’19; Yao, Oshikawa 20;
Ogata, Tasaki '21; Cheng, Seiberg ’22; Seifnashri '23; Kapustin, Sopenko ’24]



The local projective algebra implies RpU, = (e 7r®)- U R,

» When e'%r@ is non-trivial for a unitary Ry, this is a

manifestation of a Lieb-Schultz-Mattis (LSM) anomaly
» The LSM theorem forbids SPT phases

[Lieb, Schultz, Mattis ’61; Oshikawa ’99; Hastings ’03; ---; Chen, Gu, Wen ’10; Else, Thorngren ’19; Yao, Oshikawa 20;
Ogata, Tasaki '21; Cheng, Seiberg ’22; Seifnashri '23; Kapustin, Sopenko ’24]

When e'%r® is non-trivial for only non-invertible R, there is
the R-| SPT) = 0 loophole = Can have an SPT,

» Does this projective algebra then have any consequences?

Yes! There is an SPT-LSM theorem




SPT-LLSM theorems

An SPT-LSM theorem is an obstruction to a trivial SPT*

|[Lu ’17; Yang, Jiang, Vishwanath, Ran '17; Lu, Ran, Oshikawa ’17; Else, Thorngren ’19; Jiang, Cheng, Qi, Lu ’19 |

» Any SPT state must have non-zero entanglement

Symmetry-enforced entanglement

*Trivial SPT = symmetric product state, which is a non-canonical choice



SPT-LLSM theorems

An SPT-LSM theorem is an obstruction to a trivial SPT*

|[Lu ’17; Yang, Jiang, Vishwanath, Ran '17; Lu, Ran, Oshikawa ’17; Else, Thorngren ’19; Jiang, Cheng, Qi, Lu ’19 |

» Any SPT state must have non-zero entanglement
Symmetry-enforced entanglement
Why does the projective algebra
RrU. = (") U R,
gives rise to an SPT-LSM theorem?
» Local projective algebra forbids a trivial SPT

> Any|SPT) must satisfy R-|SPT) = 0 when (e'/r@)t £ 1

*Trivial SPT = symmetric product state, which is a non-canonical choice



To prove this SPT-LSM theorem, we

1. Use that the Z(G) symmetry is on-site:

U, = H Uj(Z) which satisfies RFU].(Z) = el#r@ UJ.(Z)RF
J



To prove this SPT-LSM theorem, we

1. Use that the Z(G) symmetry is on-site:
U, = H U].(Z) which satisfies RFU].(Z) = el#r@ UJ.(Z)RF
J

2. Use that any translation-inv product state|GS) satisfies

R-|GS) # 0 for some L = L* (/8 = 1) i e L1GZ
g_ . - )

L
» For %] — (]:|G|7 RF ® Z Cg|g> :)(F(gl’)cg|§§> + ...
j=1 geG

» (Generally true if there is an IR TQFT description since
R | GSTQFT> — dr | GSTQFT>



If there is an SPT state|GS) that is a product state:

> U_|GS) =e%|GS) = U].<Z>|Gs> = ¢'%| GS)

Using that R-|GS) = 4| GS) # 0 at L = L*:

1. RFU].(Z) |GS) = e*R| GS) = 4re*|GS) «——— Contradiction

9 RFUj(z) |GS) = el¢r® Uj(z) R-|GS) = /IreiezLei¢F(Z) | GS) 4/



If there is an SPT state|GS) that is a product state:

> U_|GS) =e%|GS) = U].<Z>|Gs> = ¢'%| GS)

Using that R-|GS) = 4| GS) # 0 at L = L*:

L. RFUj(Z) |GS) = eiQZLRﬂGS) — /lreiQZL|GS> <+— (ontradiction
2. R-UP|GS) = ePr@UDRL| GS) = Ae'%Le?r@ | GS) 4/
J J

—> (Cannot be an SPT state that is a product state at L = L*



If there is an SPT state|GS) that is a product state:

> U_|GS) =e%|GS) = U]@lGS) = ¢'%| GS)

Using that R-|GS) = 4| GS) # 0 at L = L*:

1. RiUP|GS) = e Ry | GS) = Ae*" | GS) «—— Contradiction
2. RFU].(Z) |GS) = e!¢r@ Uj(Z)RF |GS) = Ae'Le¥r@| GS) 4/

—> (Cannot be an SPT state that is a product state at L = L*

—> By locality, there cannot be an SPT state that is a
product state for any L



000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Therefore, the projective non-invertible symmetry

prevents a product state SPT

» All SPTs must have non-zero entanglement




Non-invertible weak SPT

What is the characterization of these SPTs?

» They must satisfy R-|GS) = 0 for nontrivial (e//r@)



Non-invertible weak SPT

What is the characterization of these SPTs?

» They must satisfy R-|GS) = 0 for nontrivial (e'¢r@)~
Two possibilities:

1. An SPT state satisfies R-|GS) = 0 for all system sizes L

2. For L = L* where all ()" = 1, an SPT state satisfies
R-|GS) = A-|GS) # 0, but R-|GS) =0 for L # L*



Non-invertible weak SPT

What is the characterization of these SPTs?

» They must satisfy R-|GS) = 0 for nontrivial (e//r@)

Two possibilities:

2. For L = L* where all ()" = 1, an SPT state satisfies
R-|GS) = A-|GS) # 0, but R-|GS) =0 for L # L*

The first is incompatible with an IR TQFT



Non-invertible weak SPT

fAt L =L* SPTs satisfy R-|GS) = A-|GS) # 0 \
At L=L*+1, SPTs satisfy R-|GS) =0

» All SPT states have translation defects dressed by
non-trivial Rep(G) symmetry charge

Q A a trivial SPT = SPT-LSM theorem j




Whether there is an (SPT)-LSM theorem depends on G:

no ( No projective \
@S Z(G) non-trivial? ) gy algebra
ng G = SS) D107 Ay
l yes

( -G G) yes SPT-LSM constraint
c.g., G D87 Q87
l o

CLSM anomaly e.g., G = Abelian, D, Dich




We found a new class of entangled weak SPTs characterized

by a projective Z(G) X Rep(G) non-invertible symmetry

1. An exactly solvable model in a weak SPT phase
characterized by a projective Z, X Rep(Dg) symmetry

2. General discussion on projective Z(G) X Rep(G) weak SPTs
—> an SPT-LSM theorem

For the newcomer: New quantum phases and models can be

discovered using generalized symmetries as a guide!

For the initiated: Beyond-relativistic-QF T-symmetries are

interesting!



Back-up slides



Consider a 1 + 1D system with two Z, qudits on each site
j~j+ L with L even and Z, X Z, symmetry operators

_ ¢ _ 5 \2j+1
u=[1x% v=]l@z™
J J
» Local projective algebra UV, = — V.U,

There is no trivial | SPT) = ® |w;)
J

» Fasily proven by contradiction using U;V; = — V;U;

» Defect perspective: Inserting a U symmetry defect causes

TV = — HZ?Z2 VT Non-abelian group,
L7777 not a projective rep!

J




B [Rep(Dg) X ZQ] — <O';, ZJQ, Zj Zj_|_1, 0';: Cj_|_1 O-;:-I—lﬂ X;J X}+1>



The surprising lack of an 't Hooft anomaly

Inserting U or Rg symmetry defects leads to the projective

algebras

U symmetry defect | Re symmetry defect

R.T=—-TR; TU=-UT

For invertible symmetries, such projective algebras imply an 't

Hooft anomaly (e.g., the type III anomaly (—l)fM3anUC )

[Matsui ’'08; Yao, Oshikawa ’20; Seifnashri ’23; Kapustin, Sopenko ’24]

» This is not true for non-invertible symmetries!



The surprising lack of an 't Hooft anomaly

Inserting U or Rg symmetry defects leads to the projective

U symmetry defect | Re symmetry defect
ReT=-TR. TU=-UT

algebras

Fails because of
Rg = 0 loophole




The surprising lack of an 't Hooft anomaly

Inserting U or Rg symmetry defects leads to the projective

algebras

U symmetry defect | Re symmetry defect
ReT=-TR. TU=-UT

Fails because the degeneracy

Fails because of

R = 0 loophole 1s encoded in the defect’s
—

quantum dimension



4 R L)
_ (2) _ (1)
.= [1% k=e([]2")
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Letting e'%r? = y(2)/d-

Translation defects| z € Z(G) defect [' € Rep(G) defect
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» (Generalizes the G = Z, projective algebra of the ordinary

quantum XY model



Many-qubit model on a periodic chain with Hamiltonian
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» There is an LSM anomaly involving the Z7 X X7}

Symmetl“y |[Chen, Gu, Wen 2010; Ogata, Tasaki 2021]

U. = Haj?c, U, = Hajy , and lattice translations T
J J
» Manifests through the projective algebras cuens. seibers 2023

Translation defects 75 defect 7> defect

vU,=-Duu, | U,T=-TU,



A G-qudit is a |G |-level quantum mechanical system whose

states are |g) with g € G

» (G is a finite group, e.g. Z,, S;, Dg, SmallGroup(32,49)

Group based Pauli operators s 2oy
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» X operators labeled by group elements K [g =6 )
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» 7 operators are MPOs labeled by irreps I': G — GL(d, C)
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FExample: G = Z, where g€ {1,— 1} and I' € {1,1'}
X0 = XU = [z0],, =1
YD — YD = 5 ZV],, = o°

Group based Pauli operators satisty

1. X© X0 = Xen o X0 = X and X© X0 = ¥ X
- =

2. X® X0 = X0 X® iff g and h commute
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4. Unitarity: Y@©T = X(g)’ Y@©T = X(g)’ [Z(F)T Z(F)]aﬁ _ 5aﬂ



Group based Pauli operators are useful for constructing

quantum lattice HlOdGlS [Brell 2014; Albert et. al. 2021; Fechisin, Tantivasadakarn, Albert 2023]

Group based XY model: Consider a periodic 1d lattice of L
sites. On each site j resides a G-qudit and its Hamiltonian
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» LFor G = Z,, this is the ordinary quantum XY model
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Z; lattice translations: T@]-TT =04,

Various internal symmetries:

> Z(G) symmetry U, = [ | ?J@ with z € Z(G)

J

L
» Rep(G) symmetry Ry = Tr(HZj(F)>
j=1
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@ep(G) x Z(G) x Zj, with projective algebra
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Jinol R > invertible
PO C (G X 2(G)) X 2L ( ep(& ) X L) dipole
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symmetry
o \ / .

(G x Z(G) x non-invertible translatlon




