

An SPT-LSM theorem for weak SPTs with non-invertible symmetry

Salvatore Pace

MIT

Institute for Basic Science

Ho Tat Lam

Ömer Aksoy

arXiv:2409.18113

Quantum phases and symmetry

A fundamental problem in **QFT/CMT/HEP** is to understand quantum phases

1. How do we diagnose different quantum phases?
2. What are the allowed possible quantum phases?

Quantum phases and symmetry

A fundamental problem in **QFT/CMT/HEP** is to understand quantum phases

1. How do we diagnose different quantum phases?
2. What are the allowed possible quantum phases?

Sometimes, phases are characterized by a **symmetry**

- **Superfluids** by $U(1)$ boson number conservation
- **Topological insulators** by $U(1)_f$ and \mathbb{Z}_2^T symmetries

For such **phases, symmetries** provide answers to questions (1) and (2).

Quantum phases and symmetry

Quantum phases \iff Generalized symmetries

Quantum phases and symmetry

Quantum phases \iff Generalized symmetries

Build-a-phase recipe

(1) Choose your **generalized symmetries** adjectives

$a_1 - a_2 - a_3 - \dots$ Symmetry

► e.g., n -form, (non-)invertible, subsystem, dipole, ...

(2) Specify SSB and SPT pattern

Quantum phases and symmetry

Quantum phases \iff Generalized symmetries

Build-a-phase recipe

(1) Choose your **generalized symmetries** adjectives

$a_1 - a_2 - a_3 - \dots$ Symmetry

► e.g., n -form, (non-)invertible, subsystem, dipole, ...

(2) Specify SSB and SPT pattern

Ordered phases

Topological insulators

Quantum phases and symmetry

Quantum phases \iff Generalized symmetries

Build-a-phase recipe

(1) Choose your **generalized symmetries** adjectives

$a_1-a_2-a_3-\dots$ Symmetry

► e.g., n -form, (non-)invertible, subsystem, dipole, ...

(2) Specify SSB and SPT pattern

Ordered phases

Topological order

Topological insulators

Maxwell phases

Higgs phases

Fracton phases

Quantum phases and symmetry

Quantum phases \iff Generalized symmetries

Build-a-phase recipe

(1) Choose your **generalized symmetries** adjectives

$a_1 - a_2 - a_3 - \dots$ Symmetry

► e.g., n -form, (non-)invertible, subsystem, dipole, ...

(2) Specify SSB and SPT pattern

Ordered phases

Topological insulators

Topological order

Maxwell phases

Higgs phases

Fracton phases

Phases we have yet to name!

Quantum phases and symmetry

Which quantum phases are characterized by
generalized symmetries?

Why care?

1. Provides a **novel** and **unifying** perspective of **quantum phases**
2. Guides us towards new **quantum phases** and models
3. Further develops a classification of **quantum phases** based on **symmetries** (a “generalized Landau paradigm”)

Quantum phases and symmetry

Which quantum phases are characterized by
generalized symmetries?

Why care?

1. Provides a **novel** and **unifying** perspective of quantum phases
2. Guides us towards new **quantum phases** and models
3. Further develops a classification of quantum phases based on **symmetries** (a “generalized Landau paradigm”)

TL;DR for this talk

This talk: 1 + 1D SPT phases characterized by translation and **non-invertible symmetries**

- Find a new class of entangled weak SPTs characterized by **projective non-invertible symmetries** on the lattice

TL;DR for this talk

This talk: 1 + 1D SPT phases characterized by translation and **non-invertible symmetries**

- Find a new class of entangled weak SPTs characterized by **projective non-invertible symmetries** on the lattice

Outline

1. Review SPTs from a **symmetry defect** perspective
2. Simple example of an entangled weak SPT characterized by a **projective non-invertible symmetry**
3. General discussion on **projective $Z(G) \times \text{Rep}(G)$ symmetry** and **(SPT-)LSM theorems**

What are SPTs

An SPT phase is a gapped quantum phase protected by a symmetry with a unique ground state on all closed spatial manifolds [Chen, Gu, Liu, Wen 2011; Else, Nayak 2014; ...]

- Interesting physics can arise on boundaries and interfaces between SPTs (e.g., topological order, gapless excitations)

What are SPTs

An SPT phase is a gapped quantum phase protected by a symmetry with a unique ground state on all closed spatial manifolds [Chen, Gu, Liu, Wen 2011; Else, Nayak 2014; ...]

- Interesting physics can arise on boundaries and interfaces between SPTs (e.g., topological order, gapless excitations)

SPTs are characterized by their bulk response to static probes

- Background gauge fields and symmetry defects

What are SPTs

An SPT phase is a gapped quantum phase protected by a symmetry with a unique ground state on all closed spatial manifolds [Chen, Gu, Liu, Wen 2011; Else, Nayak 2014; ...]

- Interesting physics can arise on boundaries and interfaces between SPTs (e.g., topological order, gapless excitations)

SPTs are characterized by their bulk response to static probes

- Background gauge fields and symmetry defects

Ordinary insulator

$$S[A] = \frac{1}{2} \int F \wedge \star F$$

Topological insulator

[Qi, Hughes, Zhang 2008; ...]

$$S[A] = \frac{1}{2} \int F \wedge \star F + \frac{\pi}{4\pi} F \wedge F$$

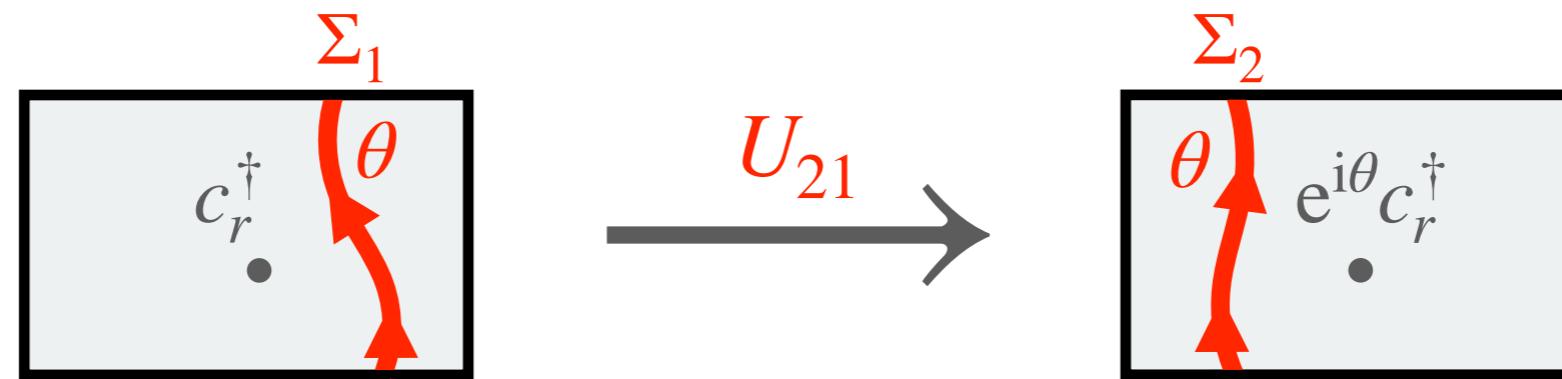
Symmetry defects

Symmetry defects are localized modifications to the Hamiltonian $H_{\text{defect}}^{(\Sigma)} = H + \delta H(\Sigma)$ and other operators

- Moved using unitary operators (are topological defects)

$$H_{\text{defect}}^{(\Sigma_2)} = U_{21} H_{\text{defect}}^{(\Sigma_1)} U_{21}^\dagger$$

- Implement the symmetry transformation across space



- Twisted boundary conditions $(T_\perp)^L = \text{Symmetry operator}$

Example: $\mathbb{Z}_2 \times \mathbb{Z}_2$ SPTs

1d closed chain in space with **two qubits** on each site $j \sim j + L$ acted on by **Pauli operators** X_j, Z_j and \tilde{X}_j, \tilde{Z}_j .

$$H_p = - \sum_{j=1}^L (X_j + \tilde{X}_j)$$

$$H_c = - \sum_{j=1}^L (\tilde{Z}_{j-1} X_j \tilde{Z}_j + Z_j \tilde{X}_j Z_{j+1})$$

$$|\text{GS}_p\rangle = |+++ \cdots +\rangle$$

$$|\text{GS}_c\rangle = \tilde{Z}_{j-1} X_j \tilde{Z}_j |\text{GS}_c\rangle = Z_j \tilde{X}_j Z_{j+1} |\text{GS}_c\rangle$$

- Both models have a **unique symmetric gapped ground state**
- There is a $\mathbb{Z}_2 \times \tilde{\mathbb{Z}}_2$ **symmetry** $U = \prod_j X_j$ and $\tilde{U} = \prod_j \tilde{X}_j$ with $U|\text{GS}_.\rangle = \tilde{U}|\text{GS}_.\rangle = |\text{GS}_.\rangle$

Example: $\mathbb{Z}_2 \times \mathbb{Z}_2$ SPTs

1d closed chain in space with **two qubits** on each site $j \sim j + L$ acted on by **Pauli operators** X_j, Z_j and \tilde{X}_j, \tilde{Z}_j .

$$H_p = - \sum_{j=1}^L (X_j + \tilde{X}_j)$$

$$H_c = - \sum_{j=1}^L (\tilde{Z}_{j-1} X_j \tilde{Z}_j + Z_j \tilde{X}_j Z_{j+1})$$

$$|\text{GS}_p\rangle = |+++ \cdots +\rangle$$

$$|\text{GS}_c\rangle = \tilde{Z}_{j-1} X_j \tilde{Z}_j |\text{GS}_c\rangle = Z_j \tilde{X}_j Z_{j+1} |\text{GS}_c\rangle$$

- Both models have a unique symmetric gapped ground state
- H_p and H_c are both in a $\mathbb{Z}_2 \times \mathbb{Z}_2$ SPT phase
- There is a $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry $U = \prod_j X_j$ and $\tilde{U} = \prod_j \tilde{X}_j$ with $U|\text{GS}_p\rangle = \tilde{U}|\text{GS}_c\rangle = |\text{GS}_p\rangle$

Distinguishing $\mathbb{Z}_2 \times \mathbb{Z}_2$ SPTs

Are H_p and H_c in different $\mathbb{Z}_2 \times \tilde{\mathbb{Z}}_2$ SPT phases?

We can check by inserting a $\textcolor{teal}{U}$ symmetry defect at $\langle L, 1 \rangle$

- Gives rise to $\textcolor{brown}{U}$ -twisted boundary conditions: $Z_{j+L} = -Z_j$
- 1. H_p is unaffected, so its ground state still satisfies

$$U|\text{GS}_{p;U}\rangle = +|\text{GS}_{p;U}\rangle \quad \tilde{U}|\text{GS}_{p;U}\rangle = +|\text{GS}_{p;U}\rangle$$

- 2. H_c becomes $\textcolor{teal}{H}_c + 2Z_L \tilde{X}_L Z_1$, and its ground state satisfies

$$U|\text{GS}_{c;U}\rangle = +|\text{GS}_{c;U}\rangle \quad \tilde{U}|\text{GS}_{c;U}\rangle = -|\text{GS}_{c;U}\rangle$$

Distinguishing $\mathbb{Z}_2 \times \mathbb{Z}_2$ SPTs

Different **responses** imply that H_p and H_c are in different $\mathbb{Z}_2 \times \tilde{\mathbb{Z}}_2$ SPT phases

[Chen, Lu, Vishwanath 2013; Gaiotto, Johnson-Freyd 2017; Wang, Ning, Cheng 2021]

Low-energy EFTs of H_p and H_c

$$Z_p[A, \tilde{A}] = 1 \quad Z_c[A, \tilde{A}] = (-1)^{\int A \cup \tilde{A}}$$

1. H_p is **unaffected**, so its ground state still satisfies

$$U|\text{GS}_{p;U}\rangle = +|\text{GS}_{p;U}\rangle \quad \tilde{U}|\text{GS}_{p;U}\rangle = +|\text{GS}_{p;U}\rangle$$

2. H_c becomes $H_c + 2Z_L \tilde{X}_L Z_1$, and its ground state satisfies

$$U|\text{GS}_{c;U}\rangle = +|\text{GS}_{c;U}\rangle \quad \tilde{U}|\text{GS}_{c;U}\rangle = -|\text{GS}_{c;U}\rangle$$

Example: \mathbb{Z}_2 weak SPTs

1d periodic lattice with a **qubit** on each site $j \sim j + L$

$$H_+ = - \sum_j X_j \quad \text{vs.} \quad H_- = + \sum_j X_j$$

- Both have a unique gapped ground state $|\text{GS}_\pm\rangle = \otimes_j |\pm\rangle$
- **Symmetries:** $\mathbb{Z}_2 \times \mathbb{Z}_L$ with $U = \prod_j X_j$ and $T: j \rightarrow j + 1$

H_+ and H_- are both in $\mathbb{Z}_2 \times \mathbb{Z}_L$ SPT phases

Example: \mathbb{Z}_2 weak SPTs

1d periodic lattice with a **qubit** on each site $j \sim j + L$

$$H_+ = - \sum_j X_j \quad \text{vs.} \quad H_- = + \sum_j X_j$$

- Both have a unique gapped ground state $|\text{GS}_\pm\rangle = \otimes_j |\pm\rangle$
- **Symmetries:** $\mathbb{Z}_2 \times \mathbb{Z}_L$ with $U = \prod_j X_j$ and $T: j \rightarrow j + 1$

H_+ and H_- are both in $\mathbb{Z}_2 \times \mathbb{Z}_L$ SPT phases

SPTs characterized by translations are called weak SPTs

H_+ and H_- are both in \mathbb{Z}_2 weak SPT phases

Example: \mathbb{Z}_2 weak SPTs

Are H_+ and H_- in different \mathbb{Z}_2 weak SPT phases?

Let's insert a $U = \prod_j X_j$ symmetry defect at $\langle L, 1 \rangle$

- Neither H_+ or H_- are modified by $Z_{j+L} = -Z_j$
- Translation operator becomes $T = X_1 T_{\text{defect-free}}$ ($T^L = U$)

Example: \mathbb{Z}_2 weak SPTs

Are H_+ and H_- in different \mathbb{Z}_2 weak SPT phases?

Let's insert a $U = \prod_j X_j$ symmetry defect at $\langle L, 1 \rangle$

- Neither H_+ or H_- are modified by $Z_{j+L} = -Z_j$
- Translation operator becomes $T = X_1 T_{\text{defect-free}}$ ($T^L = U$)

	Even L	Even L , \mathbb{Z}_2 symmetry defect
$U \text{GS}_\pm \rangle =$	$+ \text{GS}_\pm \rangle$	$+ \text{GS}_\pm \rangle$
$T \text{GS}_\pm \rangle =$	$+ \text{GS}_\pm \rangle$	$\pm \text{GS}_\pm \rangle$

Different \mathbb{Z}_2 weak SPTs

Example: \mathbb{Z}_2 weak SPTs

Are H_+ and H_- in different \mathbb{Z}_2 weak SPT phases?

Let's insert a $U = \prod_j X_j$ symmetry defect at $\langle L, 1 \rangle$

- Neither H_+ or H_- are modified by $Z_{j+L} = -Z_j$
- Translation operator becomes $T = X_1 T_{\text{defect-free}}$ ($T^L = U$)

	Even L	Even L , \mathbb{Z}_2 symmetry defect	Odd L
$U \text{GS}_\pm \rangle =$	$+ \text{GS}_\pm \rangle$	$+ \text{GS}_\pm \rangle$	$\pm \text{GS}_\pm \rangle$
$T \text{GS}_\pm \rangle =$	$+ \text{GS}_\pm \rangle$	$\pm \text{GS}_\pm \rangle$	$+ \text{GS}_\pm \rangle$

Example: \mathbb{Z}_2 weak SPTs

Are H_+ and H_- in different \mathbb{Z}_2 weak SPT phases?

Translation defect carries \mathbb{Z}_2 symmetry charge in $|\text{GS}_-\rangle$

► Inserting a translation defect is done by

$$T^L = 1 \rightarrow T^L = T \implies L \rightarrow L - 1$$

► Translation operator becomes $T = X_1 T_{\text{defect-free}}$ ($T^L = U$)

	Even L	Even L , \mathbb{Z}_2 symmetry defect	Odd L
$U \text{GS}_\pm\rangle =$	$+ \text{GS}_\pm\rangle$	$+ \text{GS}_\pm\rangle$	$\pm \text{GS}_\pm\rangle$
$T \text{GS}_\pm\rangle =$	$+ \text{GS}_\pm\rangle$	$\pm \text{GS}_\pm\rangle$	$+ \text{GS}_\pm\rangle$

A curious Hamiltonian

1d periodic lattice with a single **qubit** and **\mathbb{Z}_4 qudit** on each site $j \sim j + L$ [SP, Lam, Aksoy arXiv:2409.18113]

- σ^x, σ^z act on **qubits**: $(\sigma^x)^2 = (\sigma^z)^2 = 1$ and $\sigma^z \sigma^x = -\sigma^x \sigma^z$
- X, Z act on **\mathbb{Z}_4 qudits**: $X^4 = Z^4 = 1$ and $ZX = iXZ$

A curious Hamiltonian

1d periodic lattice with a single **qubit** and \mathbb{Z}_4 **qudit** on each site $j \sim j + L$ [SP, Lam, Aksoy arXiv:2409.18113]

- σ^x, σ^z act on **qubits**: $(\sigma^x)^2 = (\sigma^z)^2 = 1$ and $\sigma^z \sigma^x = -\sigma^x \sigma^z$
- X, Z act on \mathbb{Z}_4 **qudits**: $X^4 = Z^4 = 1$ and $ZX = iXZ$

$$H = - \sum_j \sigma_j^x C_{j+1} \sigma_{j+1}^x + \frac{1}{4} \sum_j (Z_j - Z_j^\dagger) \sigma_j^z (Z_{j+1} - Z_{j+1}^\dagger)$$

- C acts as $X \rightarrow X^\dagger$ and $Z \rightarrow Z^\dagger$
- Is a sum of commuting terms and has a **unique** gapped ground state

A curious Hamiltonian

1d periodic lattice with a single **qubit** and \mathbb{Z}_4 **qudit** on each site $j \sim j + L$ [SP, Lam, Aksoy arXiv:2409.18113]

- σ^x, σ^z act on **qubits**: $(\sigma^x)^2 = (\sigma^z)^2 = 1$ and $\sigma^z \sigma^x = -\sigma^x \sigma^z$
- X, Z act on \mathbb{Z}_4 **qudits**: $X^4 = Z^4 = 1$ and $ZX = iXZ$

$$H = - \sum_j \sigma_j^x C_{j+1} \sigma_{j+1}^x + \frac{1}{4} \sum_j (Z_j - Z_j^\dagger) \sigma_j^z (Z_{j+1} - Z_{j+1}^\dagger)$$

- C
- Is
- gr

$$| \text{GS} \rangle = \sum_{\substack{\{\varphi_j = 0,1\} \\ \{\alpha_j = 0,2\}}} i^{\sum_j \alpha_j (\varphi_j - \varphi_{j-1})} \bigotimes_j |\sigma_j^x = (-1)^{\varphi_j}, Z_j = i^{\alpha_j+1} \rangle$$

Some curious symmetries

$$H = - \sum_j \sigma_j^x C_{j+1} \sigma_{j+1}^x + \frac{1}{4} \sum_j (Z_j - Z_j^\dagger) \sigma_j^z (Z_{j+1} - Z_{j+1}^\dagger)$$

What are the **symmetries** of H ?

Some curious symmetries

$$H = - \sum_j \sigma_j^x C_{j+1} \sigma_{j+1}^x + \frac{1}{4} \sum_j (Z_j - Z_j^\dagger) \sigma_j^z (Z_{j+1} - Z_{j+1}^\dagger)$$

What are the **symmetries** of H ?

- \mathbb{Z}_L lattice **translations** $T: j \rightarrow j + 1$

Some curious symmetries

$$H = - \sum_j \sigma_j^x C_{j+1} \sigma_{j+1}^x + \frac{1}{4} \sum_j (Z_j - Z_j^\dagger) \sigma_j^z (Z_{j+1} - Z_{j+1}^\dagger)$$

What are the **symmetries** of H ?

- \mathbb{Z}_L lattice **translations** $T: j \rightarrow j + 1$
- Three \mathbb{Z}_2 symmetry operators

$$U = \prod_j X_j^2, \quad R_1 = \prod_j \sigma_j^z, \quad R_2 = \prod_j Z_j^2$$

Some curious symmetries

$$H = - \sum_j \sigma_j^x C_{j+1} \sigma_{j+1}^x + \frac{1}{4} \sum_j (Z_j - Z_j^\dagger) \sigma_j^z (Z_{j+1} - Z_{j+1}^\dagger)$$

What are the **symmetries** of H ?

- \mathbb{Z}_L lattice **translations** $T: j \rightarrow j + 1$
- Three **\mathbb{Z}_2** symmetry operators

$$U = \prod_j X_j^2, \quad R_1 = \prod_j \sigma_j^z, \quad R_2 = \prod_j Z_j^2$$

- **🤷** symmetry operator

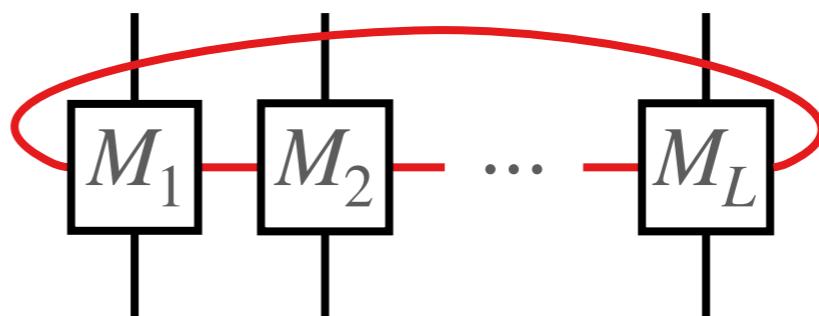
$$R_E = \frac{1}{2} (1 + R_1) (1 + R_2) \prod_j Z_j^{\prod_{k=1}^{j-1} \sigma_k^z}$$

Some curious symmetries

1

R_E can be written as a $\chi = 2$ matrix product operator

$$R_E = \text{Tr} \left(\prod_{j=1}^L M_j \right) \equiv$$



► MPO tensor

$$M_j = \frac{1}{2} \begin{pmatrix} Z_j + Z_j^\dagger & i(Z_j - Z_j^\dagger) \sigma_j^z \\ -i(Z_j - Z_j^\dagger) & (Z_j + Z_j^\dagger) \sigma_j^z \end{pmatrix}$$

► 🤔 symmetry operator

$$R_E = \frac{1}{2} (1 + R_1) (1 + R_2) \prod_j Z_j^{\prod_{k=1}^{j-1} \sigma_k^z}$$

Some curious symmetries

$$H = - \sum_j \sigma_j^x C_{j+1} \sigma_{j+1}^x + \frac{1}{4} \sum_j (Z_j - Z_j^\dagger) \sigma_j^z (Z_{j+1} - Z_{j+1}^\dagger)$$

What are the symmetries of H ?

- R_E is a **non-invertible symmetry** operator
- $R_1 |\psi\rangle = - |\psi\rangle$ or $R_2 |\psi\rangle = - |\psi\rangle \implies R_E |\psi\rangle = 0$
- R_E have zero-eigenvalues $\implies R_E$ is non-invertible

$$\begin{array}{c} \text{II} \quad j' \\ \text{I} \quad j \\ \text{II} \quad j' \\ \text{I} \quad j \end{array}$$

- symmetry operator

$$R_E = \frac{1}{2} (1 + R_1) (1 + R_2) \prod_j Z_j^{\prod_{k=1}^{j-1} \sigma_k^z}$$

A curious SPT

These symmetry operators obey

$$\textcolor{red}{U}^2 = 1, \quad \textcolor{blue}{R}_i^2 = 1, \quad \textcolor{blue}{R}_{\mathbb{E}}^2 = 1 + \textcolor{blue}{R}_1 + \textcolor{blue}{R}_2 + \textcolor{blue}{R}_1 \textcolor{blue}{R}_2, \quad \textcolor{blue}{R}_{\mathbb{E}} \textcolor{blue}{R}_i = \textcolor{blue}{R}_i \textcolor{blue}{R}_{\mathbb{E}} = \textcolor{blue}{R}_{\mathbb{E}}$$

$$\textcolor{red}{U} \textcolor{blue}{R}_{\mathbb{E}} = (-1)^L \textcolor{blue}{R}_{\mathbb{E}} \textcolor{red}{U}$$

- Form a (projective) $\mathbb{Z}_2 \times \text{Rep}(D_8)$ symmetry

A curious SPT

These symmetry operators obey

$$U^2 = 1, \quad R_i^2 = 1, \quad R_E^2 = 1 + R_1 + R_2 + R_1 R_2, \quad R_E R_i = R_i R_E = R_E$$

$$UR_E = (-1)^L R_E U$$

- Form a (projective) $\mathbb{Z}_2 \times \text{Rep}(D_8)$ symmetry

Ground state satisfies:

$$T|GS\rangle = +|GS\rangle \quad U|GS\rangle = +|GS\rangle \quad R_1|GS\rangle = +|GS\rangle$$

A curious SPT

These symmetry operators obey

$$U^2 = 1, \quad R_i^2 = 1, \quad R_E^2 = 1 + R_1 + R_2 + R_1 R_2, \quad R_E R_i = R_i R_E = R_E$$

$$UR_E = (-1)^L R_E U$$

- Form a (projective) $\mathbb{Z}_2 \times \text{Rep}(D_8)$ symmetry

Ground state satisfies:

$$T|GS\rangle = +|GS\rangle \quad U|GS\rangle = +|GS\rangle \quad R_1|GS\rangle = +|GS\rangle$$

$$R_2|GS\rangle = \begin{cases} +|GS\rangle, & L \text{ even} \\ -|GS\rangle, & L \text{ odd} \end{cases}$$

A curious SPT

These symmetry operators obey

$$U^2 = 1, \quad R_i^2 = 1, \quad R_E^2 = 1 + R_1 + R_2 + R_1 R_2, \quad R_E R_i = R_i R_E = R_E$$

$$UR_E = (-1)^L R_E U$$

- Form a (projective) $\mathbb{Z}_2 \times \text{Rep}(D_8)$ symmetry

Ground state satisfies:

$$T|GS\rangle = +|GS\rangle \quad U|GS\rangle = +|GS\rangle \quad R_1|GS\rangle = +|GS\rangle$$

$$R_2|GS\rangle = \begin{cases} +|GS\rangle, & L \text{ even} \\ -|GS\rangle, & L \text{ odd} \end{cases}$$

$$R_E|GS\rangle = \begin{cases} +2|GS\rangle, & L \text{ even} \\ 0, & L \text{ odd} \end{cases}$$

A curious SPT

These symmetry operators obey

H is in a $\mathbb{Z}_2 \times \text{Rep}(D_8)$ weak SPT phase

- Translation defects carry $\text{Rep}(D_8)$ symmetry charge in $|\text{GS}\rangle$
- *Spoiler*: $R_E |\text{GS}\rangle = 0$ for odd $L \implies$ SPT-LSM theorem

Ground state satisfies:

$$T|\text{GS}\rangle = +|\text{GS}\rangle \quad U|\text{GS}\rangle = +|\text{GS}\rangle \quad R_1|\text{GS}\rangle = +|\text{GS}\rangle$$

$$R_2|\text{GS}\rangle = \begin{cases} +|\text{GS}\rangle, & L \text{ even} \\ -|\text{GS}\rangle, & L \text{ odd} \end{cases}$$

$$R_E|\text{GS}\rangle = \begin{cases} +2|\text{GS}\rangle, & L \text{ even} \\ 0, & L \text{ odd} \end{cases}$$

A curious projective algebra

This SPT is characterized by a projective **symmetry**:

$$UR_E = -R_E U \quad (\text{odd } L)$$

Projective unitary **symmetries** $U_1 U_2 = e^{i\theta} U_2 U_1$ forbid SPTs

► Assume non-degenerate **symmetric** ground state:

$$\left. \begin{array}{l} 1. \quad U_1 U_2 |\psi\rangle = |\psi\rangle \\ 2. \quad U_1 U_2 |\psi\rangle = e^{i\theta} U_2 U_1 |\psi\rangle = e^{i\theta} |\psi\rangle \end{array} \right\} \begin{array}{l} \text{Contradicts} \\ \text{assumption} \end{array}$$

A curious projective algebra

This SPT is characterized by a projective **symmetry**:

$$UR_E = -R_E U \quad (\text{odd } L)$$

Projective unitary **symmetries** $U_1 U_2 = e^{i\theta} U_2 U_1$ forbid SPTs

► Assume non-degenerate **symmetric** ground state:

$$\left. \begin{array}{l} 1. \quad U_1 U_2 |\psi\rangle = |\psi\rangle \\ 2. \quad U_1 U_2 |\psi\rangle = e^{i\theta} U_2 U_1 |\psi\rangle = e^{i\theta} |\psi\rangle \end{array} \right\} \begin{array}{l} \text{Contradicts} \\ \text{assumption} \end{array}$$

Projective **non-invertible symmetries** are compatible with SPTs

- **Loophole**: symmetry operator has zero-eigenvalues
- $UR_E = (-1)^L R_E U \implies R_E |\text{GS}_{\text{SPT}}\rangle = 0$ when L is odd

Projective $Z(G) \times \text{Rep}(G)$ symmetry

The **projective** $\mathbb{Z}_2 \times \text{Rep}(D_8)$ symmetry is a **special case** of a more general **projective** $Z(G) \times \text{Rep}(G)$ symmetry

- $Z(G)$ is the center of a finite group G
- $\text{Rep}(G)$ is the fusion category of representations of G

Projective $Z(G) \times \text{Rep}(G)$ symmetry

The **projective** $\mathbb{Z}_2 \times \text{Rep}(D_8)$ symmetry is a **special case** of a more general **projective** $Z(G) \times \text{Rep}(G)$ symmetry

- $Z(G)$ is the center of a finite group G
- $\text{Rep}(G)$ is the fusion category of representations of G

$Z(G)$ **symmetry** operator U_z , with $z \in Z(G)$, satisfies

$$U_{z_1} U_{z_2} = U_{z_1 z_2}$$

$\text{Rep}(G)$ **symmetry** operator R_Γ , with Γ an irrep of G , satisfies

$$R_{\Gamma_a} \times R_{\Gamma_b} = R_{\Gamma_a \otimes \Gamma_b} = R_{\bigoplus_c N_{ab}^c \Gamma_c} = \sum_c N_{ab}^c R_{\Gamma_c}$$

- **Non-invertible symmetry** when G is non-Abelian

Projective $Z(G) \times \text{Rep}(G)$ symmetry

The **projectivity** arises through the relation

$$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma \quad \text{with } e^{i\phi_\Gamma(z)} = \text{Tr}[\Gamma(z)] / d_\Gamma$$

Projective $Z(G) \times \text{Rep}(G)$ symmetry

The **projectivity** arises through the relation

$$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma \quad \text{with } e^{i\phi_\Gamma(z)} = \text{Tr}[\Gamma(z)] / d_\Gamma$$

e.g., $e^{i\phi_\Gamma(z)}$ when $G = \mathbb{Z}_2$ ($Z(\mathbb{Z}_2) = \mathbb{Z}_2$)

Γ	1	sign
z	1	
$+1$	$+1$	$+1$
-1	$+1$	-1

Projective $Z(G) \times \text{Rep}(G)$ symmetry

The **projectivity** arises through the relation

$$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma \quad \text{with } e^{i\phi_\Gamma(z)} = \text{Tr}[\Gamma(z)] / d_\Gamma$$

e.g., $e^{i\phi_\Gamma(z)}$ when $G = D_8$ ($Z(D_8) = \mathbb{Z}_2$)

Γ	1	$\mathbf{1}_1$	$\mathbf{1}_2$	$\mathbf{1}_3$	E
z	+1	+1	+1	+1	+1
	-1	+1	+1	+1	-1

Projective $Z(G) \times \text{Rep}(G)$ symmetry

The **projectivity** arises through the relation

$$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma \quad \text{with } e^{i\phi_\Gamma(z)} = \text{Tr}[\Gamma(z)] / d_\Gamma$$

e.g., $e^{i\phi_\Gamma(z)}$ when $G = D_8$ ($Z(D_8) = \mathbb{Z}_2$)

Γ	1	$\mathbf{1}_1$	$\mathbf{1}_2$	$\mathbf{1}_3$	E
z	1	$\mathbf{1}_1$	$\mathbf{1}_2$	$\mathbf{1}_3$	E
$+1$	+1	+1	+1	+1	+1
-1	+1	+1	+1	+1	-1

Explicit expressions of U_z and R_Γ for the Hilbert space $\bigotimes_j \mathbb{C}^{|G|}$

$$U_z = \sum_{\{g_j\}} |zg_1, \dots, zg_L\rangle \langle g_1, \dots, g_L| \quad R_\Gamma = \sum_{\{g_j\}} \text{Tr}[\Gamma(g_1 \cdots g_L)] |g_1, \dots, g_L\rangle \langle g_1, \dots, g_L|$$

(SPT)-LSM theorems

$$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$$

There is an **Lieb-Schultz-Mattis (LSM) theorem** when $e^{i\phi_\Gamma(z)}$ is non-trivial for a unitary R_Γ

[…; Matsui 2008; Chen, Gu, Wen 2010;
Yao, Oshikawa 2020; Ogata, Tasaki 2021;
Seifnashri 2023; Kapustin, Sopenko 2024]

- The **LSM theorem** forbids SPT phases

(SPT)-LSM theorems

$$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$$

There is an **Lieb-Schultz-Mattis (LSM) theorem** when $e^{i\phi_\Gamma(z)}$ is non-trivial for a unitary R_Γ

[...; Matsui 2008; Chen, Gu, Wen 2010; Yao, Oshikawa 2020; Ogata, Tasaki 2021; Seifnashri 2023; Kapustin, Sopenko 2024]

- The **LSM theorem** forbids **SPT** phases

When there is no **LSM theorem**, the **projective algebra** gives rise to an **SPT-LSM theorem**

[Lu 2017; Yang, Jiang, Vishwanath, Ran 2017; Lu, Ran, Oshikawa 2017; ...]

- $R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$ forces any **SPT** state to satisfy $R_\Gamma |GS\rangle = 0$ for nontrivial $(e^{i\phi_\Gamma(z)})^L$
- Any **SPT** state must have non-zero entanglement

SPT-LSM theorem

To prove this **SPT-LSM theorem**, we

1. Use that the $Z(G)$ symmetry is on-site:

$$U_z = \prod_j U_j^{(z)} \quad \text{which satisfies} \quad R_\Gamma U_j^{(z)} = e^{i\phi_\Gamma(z)} U_j^{(z)} R_\Gamma$$

2. Assume that any **unique gapped ground state** $|\text{GS}\rangle$ satisfies $R_\Gamma |\text{GS}\rangle \neq 0$ for some $L = L^*$ $\left(e^{i\phi_\Gamma(z)L^*} = 1 \right)$

SPT-LSM theorem

To prove this **SPT-LSM theorem**, we

1. Use that the $Z(G)$ symmetry is on-site:

$$U_z = \prod_j U_j^{(z)} \text{ which satisfies } R_\Gamma U_j^{(z)} = e^{i\phi_\Gamma(z)} U_j^{(z)} R_\Gamma$$

2. Assume that any **unique gapped ground state** $|\text{GS}\rangle$ satisfies $R_\Gamma |\text{GS}\rangle \neq 0$ for some $L = L^*$ $(e^{i\phi_\Gamma(z)L^*} = 1)$

Easy to prove assumption for product states in $\otimes_j \mathbb{C}^{|G|}$, where

$$R_\Gamma = \sum_{\{g_j\}} \text{Tr}[\Gamma(g_1 \cdots g_L)] |g_1, \dots, g_L\rangle \langle g_1, \dots, g_L|$$

*but it is true as long as there is an IR **TQFT** description*

SPT-LSM theorem

If there is a **unique** gapped $|\text{GS}\rangle$ that is a **product state**:

► $U_z |\text{GS}\rangle = |\text{GS}\rangle \implies U_j^{(z)} |\text{GS}\rangle = |\text{GS}\rangle$

Using the assumption, $R_\Gamma |\text{GS}\rangle = \lambda_\Gamma |\text{GS}\rangle$ at $L = L^*$:

$$\left. \begin{array}{l} 1. \quad R_\Gamma U_j^{(z)} |\text{GS}\rangle = R_\Gamma |\text{GS}\rangle = \lambda_\Gamma |\text{GS}\rangle \\ 2. \quad R_\Gamma U_j^{(z)} |\text{GS}\rangle = e^{i\phi_\Gamma(z)} U_j^{(z)} R_\Gamma |\text{GS}\rangle = \lambda_\Gamma e^{i\phi_\Gamma(z)} |\text{GS}\rangle \end{array} \right\} \text{Contradiction}$$

SPT-LSM theorem

If there is a unique gapped $|\text{GS}\rangle$ that is a product state:

► $U_z |\text{GS}\rangle = |\text{GS}\rangle \implies U_j^{(z)} |\text{GS}\rangle = |\text{GS}\rangle$

Using the assumption, $R_\Gamma |\text{GS}\rangle = \lambda_\Gamma |\text{GS}\rangle$ at $L = L^*$:

$$\left. \begin{array}{l} 1. \quad R_\Gamma U_j^{(z)} |\text{GS}\rangle = R_\Gamma |\text{GS}\rangle = \lambda_\Gamma |\text{GS}\rangle \\ 2. \quad R_\Gamma U_j^{(z)} |\text{GS}\rangle = e^{i\phi_\Gamma(z)} U_j^{(z)} R_\Gamma |\text{GS}\rangle = \lambda_\Gamma e^{i\phi_\Gamma(z)} |\text{GS}\rangle \end{array} \right\} \text{Contradiction}$$

⇒ Cannot be an SPT state that is a product state at $L = L^*$

SPT-LSM theorem

If there is a unique gapped $|\text{GS}\rangle$ that is a product state:

► $U_z |\text{GS}\rangle = |\text{GS}\rangle \implies U_j^{(z)} |\text{GS}\rangle = |\text{GS}\rangle$

Using the assumption, $R_\Gamma |\text{GS}\rangle = \lambda_\Gamma |\text{GS}\rangle$ at $L = L^*$:

$$\left. \begin{array}{l} 1. \quad R_\Gamma U_j^{(z)} |\text{GS}\rangle = R_\Gamma |\text{GS}\rangle = \lambda_\Gamma |\text{GS}\rangle \\ 2. \quad R_\Gamma U_j^{(z)} |\text{GS}\rangle = e^{i\phi_\Gamma(z)} U_j^{(z)} R_\Gamma |\text{GS}\rangle = \lambda_\Gamma e^{i\phi_\Gamma(z)} |\text{GS}\rangle \end{array} \right\} \text{Contradiction}$$

⇒ Cannot be an SPT state that is a product state at $L = L^*$

⇒ By locality, there cannot be an SPT state that is a product state for any L

SPT-LSM theorem

If there is a unique gapped $|\text{GS}\rangle$ that is a product state:

Therefore, the **projective non-invertible symmetry** prevents a product state SPT

► All SPTs must have **non-zero entanglement**

We argue that the **projectivity** always causes translation defects to carry nontrivial **Rep(G)** charge in SPT states

⇒ By locality, there cannot be an SPT state that is a product state for any L

Outlook

We found a new class of entangled weak SPTs characterized by a **projective** $Z(G) \times \text{Rep}(G)$ **non-invertible symmetry**

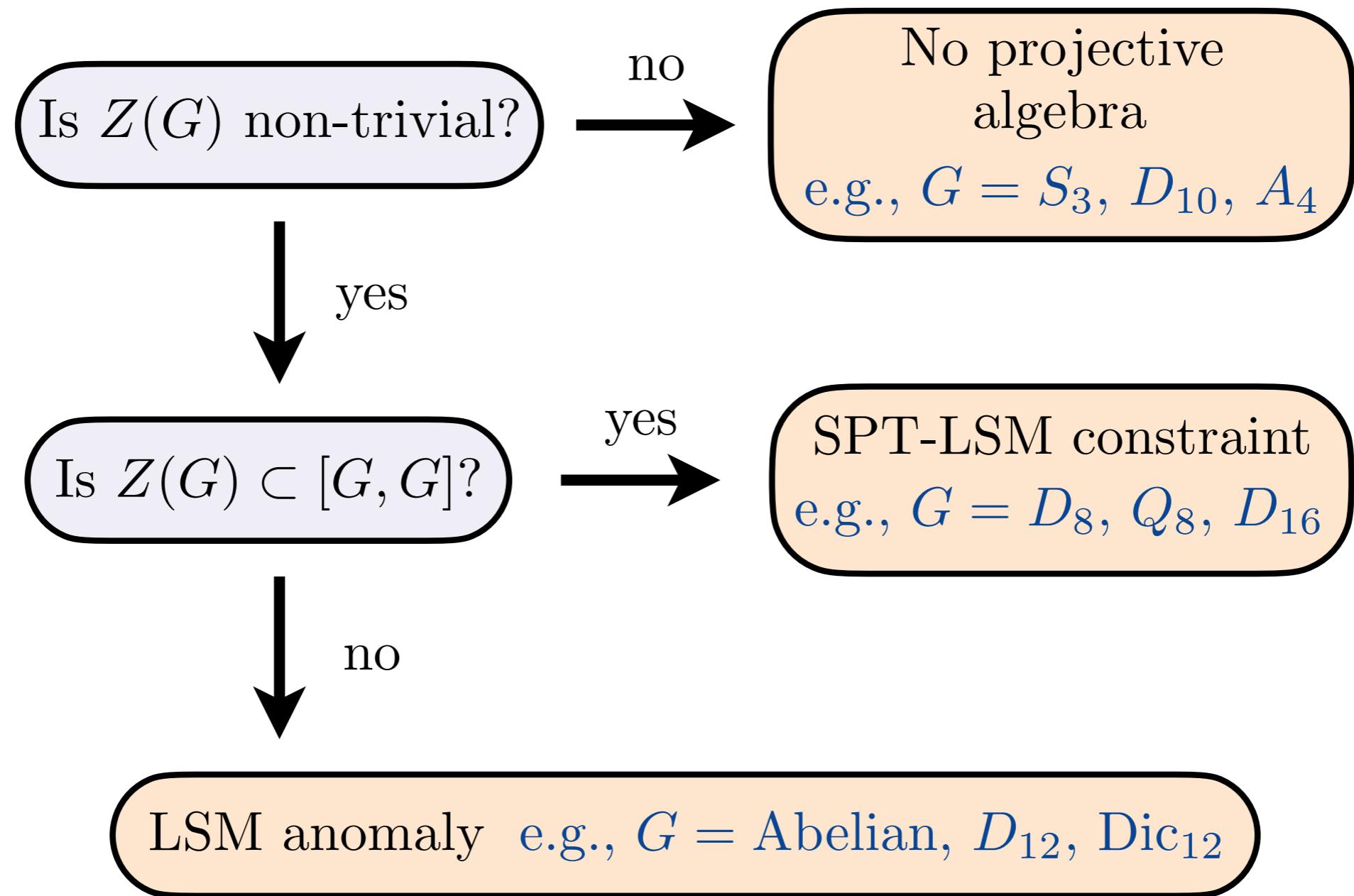
1. An exactly solvable model in a **weak SPT** phase characterized by a **projective** $\mathbb{Z}_2 \times \text{Rep}(D_8)$ **symmetry**
2. General discussion on **projective** $Z(G) \times \text{Rep}(G)$ **weak SPTs**
 \implies an **SPT-LSM theorem**

New **quantum phases** and models can be discovered using **generalized symmetries** as a guide!

Back-up slides

(SPT)-LSM theorems

Whether there is an (SPT)-LSM theorem depends on G :



Non-invertible weak SPT

If there is an SPT phase, $R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$ forces its ground state to satisfy $R_\Gamma |GS\rangle = 0$ for nontrivial $(e^{i\phi_\Gamma(z)})^L$

Non-invertible weak SPT

If there is an SPT phase, $R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$ forces its ground state to satisfy $R_\Gamma |GS\rangle = 0$ for nontrivial $(e^{i\phi_\Gamma(z)})^L$

Two possibilities:

1. An SPT state satisfies $R_\Gamma |GS\rangle = 0$ for all system sizes L
2. For $L = L^*$ where all $(e^{i\phi_\Gamma(z)})^{L^*} = 1$, an SPT state satisfies $R_\Gamma |GS\rangle = \lambda_\Gamma |GS\rangle$, but $R_\Gamma |GS\rangle = 0$ for $L \neq L^*$

Non-invertible weak SPT

If there is an SPT phase, $R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$ forces its ground state to satisfy $R_\Gamma |GS\rangle = 0$ for nontrivial $(e^{i\phi_\Gamma(z)})^L$

Two possibilities:

1. An SPT state satisfies $R_\Gamma |GS\rangle = 0$ for all system sizes L
2. For $L = L^*$ where all $(e^{i\phi_\Gamma(z)})^{L^*} = 1$, an SPT state satisfies $R_\Gamma |GS\rangle = \lambda_\Gamma |GS\rangle$, but $R_\Gamma |GS\rangle = 0$ for $L \neq L^*$

The first is incompatible with 1 + 1D TQFT, where $\langle R_\Gamma \rangle = d_\Gamma$

[Chang, Lin, Shao, Wang, Yin 2018]

- Reasonable to assume that this SPT state at some $L = L^*$ is described by a TQFT in the IR

Non-invertible weak SPT

If there is an SPT phase, $R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$ forces its

ground state to satisfy $R_\Gamma |GS\rangle = 0$ for nontrivial $(e^{i\phi_\Gamma(z)})^L$

At $L = L^*$, SPTs satisfy $R_\Gamma |GS\rangle = \lambda_\Gamma |GS\rangle$

At $L = L^* + 1$, SPTs satisfy $R_\Gamma |GS\rangle = 0$

► All SPT states have translation defects dressed by non-trivial $\text{Rep}(G)$ symmetry charge

► \exists a trivial SPT \implies SPT-LSM theorem

[Chang, Lin, Shao, Wang, Yin 2018]

► Reasonable to assume that this SPT state at some $L = L^*$ is described by a TQFT in the IR

D_8 fun facts

Dihedral group of order 8 $D_8 \simeq \langle r, s \mid r^2 = s^4 = 1, rsr = s^3 \rangle$

► Four 1d reps $1, \mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3 = \mathbf{P}_1 \otimes \mathbf{P}_2$ and one 2d irrep \mathbf{E}

$$\mathbf{P}_i \otimes \mathbf{P}_i = 1 \quad \mathbf{E} \otimes \mathbf{E} = 1 \oplus \mathbf{P}_1 \oplus \mathbf{P}_2 \oplus \mathbf{P}_3 \quad \mathbf{E} \otimes \mathbf{P}_i = \mathbf{P}_i \otimes \mathbf{E} = \mathbf{E}$$

Projective $\mathbb{Z}_2 \times \text{Rep}(D_8)$ bond algebra

$$\mathfrak{B} [\text{Rep}(D_8) \times \mathbb{Z}_2] = \left\langle \sigma_j^z, \ Z_j^2, \ Z_j Z_{j+1}, \ \sigma_j^x C_{j+1} \sigma_{j+1}^x, \ X_j^{\sigma_j^z} X_{j+1}^\dagger \right\rangle$$

LSM anomaly in the XY model

Many-qubit model on a periodic chain with Hamiltonian

$$H = \sum_{j=1}^L J \sigma_j^x \sigma_{j+1}^x + K \sigma_j^y \sigma_{j+1}^y$$

- There is an **LSM anomaly** involving the $\mathbb{Z}_2^x \times \mathbb{Z}_2^y \times \mathbb{Z}_L$ symmetry [Chen, Gu, Wen 2010; Ogata, Tasaki 2021]

$$U_x = \prod_j \sigma_j^x, \quad U_y = \prod_j \sigma_j^y, \quad \text{and lattice translations } T$$

- Manifests through the **projective algebras** [Cheng, Seiberg 2023]

<i>Translation defects</i>	\mathbb{Z}_2^x defect	\mathbb{Z}_2^y defect
$U_x U_y = (-1)^L U_y U_x$	$U_y T = - T U_y$	$T U_x = - U_x T$

GROUP BASED QUDITS

A **G -qudit** is a $|G|$ -level quantum mechanical system whose states are $|g\rangle$ with $g \in G$

- G is a **finite group**, e.g. $\mathbb{Z}_2, S_3, D_8, \text{SmallGroup}(32,49)$

Group based **Pauli operators** [Brell 2014]

- X operators labeled by group elements

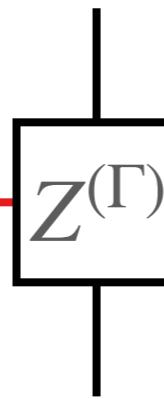
$$\vec{X}^{(g)} = \sum_h |gh\rangle\langle h|$$

$$\overleftarrow{X}^{(g)} = \sum_h |h\bar{g}\rangle\langle h|$$

$$\bar{g} \equiv g^{-1}$$

- Z operators are MPOs labeled by **irreps** $\Gamma: G \rightarrow \text{GL}(d_\Gamma, \mathbb{C})$

$$[Z^{(\Gamma)}]_{\alpha\beta} = \sum_h [\Gamma(h)]_{\alpha\beta} |h\rangle\langle h| \equiv \alpha \text{---} Z^{(\Gamma)} \text{---} \beta \quad (\alpha, \beta = 1, 2, \dots, d_\Gamma)$$



GROUP BASED QUDITS

Example: $G = \mathbb{Z}_2$ where $g \in \{1, -1\}$ and $\Gamma \in \{1, 1'\}$

$$\vec{X}^{(1)} = \overleftarrow{X}^{(1)} = [Z^{(1)}]_{11} = 1$$

$$\vec{X}^{(-1)} = \overleftarrow{X}^{(-1)} = \sigma^x \quad [Z^{(1')}]_{11} = \sigma^z$$

Group based Pauli operators satisfy

1. $\vec{X}^{(g)} \vec{X}^{(h)} = \vec{X}^{(gh)}$, $\overleftarrow{X}^{(g)} \overleftarrow{X}^{(h)} = \overleftarrow{X}^{(gh)}$, and $\vec{X}^{(g)} \overleftarrow{X}^{(h)} = \overleftarrow{X}^{(h)} \vec{X}^{(g)}$
2. $\vec{X}^{(g)} \vec{X}^{(h)} = \vec{X}^{(h)} \vec{X}^{(g)}$ iff g and h commute
3. $\vec{X}^{(g)} [Z^{(\Gamma)}]_{\alpha\beta} = [\Gamma(\bar{g})]_{\alpha\gamma} [Z^{(\Gamma)}]_{\gamma\beta} \vec{X}^{(g)}$
4. **Unitarity**: $\vec{X}^{(g)\dagger} = \vec{X}^{(\bar{g})}$, $\overleftarrow{X}^{(g)\dagger} = \overleftarrow{X}^{(\bar{g})}$, $[Z^{(\Gamma)\dagger} Z^{(\Gamma)}]_{\alpha\beta} = \delta_{\alpha\beta}$

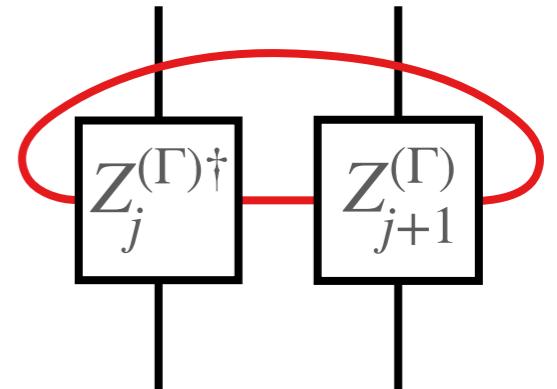
GROUP BASED XY MODEL

Group based **Pauli operators** are useful for constructing quantum lattice models [Brell 2014; Albert *et. al.* 2021; Fechisin, Tantivasadakarn, Albert 2023]

Group based **XY model**: Consider a **periodic 1d lattice** of L sites. On each site j resides a **G -qudit** and its Hamiltonian

$$H_{XY} = \sum_{j=1}^L \left(\sum_{\Gamma} J_{\Gamma} \text{Tr} \left(Z_j^{(\Gamma)\dagger} Z_{j+1}^{(\Gamma)} \right) + \sum_g K_g \overleftarrow{X}_j^{(g)} \overrightarrow{X}_{j+1}^{(g)} \right) + \text{hc}$$

$$\text{Tr} \left(Z_j^{(\Gamma)\dagger} Z_{j+1}^{(\Gamma)} \right) = \sum_{\{g\}} \chi_{\Gamma}(\bar{g}_j g_{j+1}) | \{g\} \rangle \langle \{g\} | \equiv$$



- For $G = \mathbb{Z}_2$, this is the ordinary quantum **XY model**

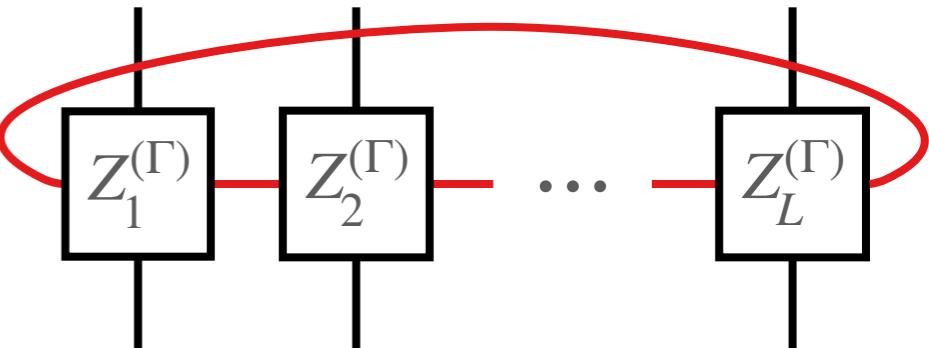
SYMMETRY OPERATORS

$$H_{XY} = \sum_{j=1}^L \left(\sum_{\Gamma} J_{\Gamma} \text{Tr} \left(Z_j^{(\Gamma)\dagger} Z_{j+1}^{(\Gamma)} \right) + \sum_g K_g \overleftarrow{X}_j^{(g)} \overrightarrow{X}_{j+1}^{(g)} \right) + \text{hc}$$

\mathbb{Z}_L lattice translations: $T \mathcal{O}_j T^\dagger = \mathcal{O}_{j+1}$

Various internal symmetries:

► $Z(G)$ symmetry $U_z = \prod_j \overrightarrow{X}_j^{(z)}$ with $z \in Z(G)$

► $\text{Rep}(G)$ symmetry $R_{\Gamma} = \text{Tr} \left(\prod_{j=1}^L Z_j^{(\Gamma)} \right) \equiv$ 

$$R_{\Gamma_a} \times R_{\Gamma_b} = R_{\Gamma_a \otimes \Gamma_b} = R_{\bigoplus_c N_{ab}^c \Gamma_c} = \sum_c N_{ab}^c R_{\Gamma_c}$$

PROJECTIVE ALGEBRA FROM DEFECTS

$$U_z = \prod_j \vec{X}_j^{(z)}$$

$$T_{\text{tw}}^{(z)} = \vec{X}_I^{(z)} T$$

$$R_\Gamma = \text{Tr} \left(\prod_{j=1}^L Z_j^{(\Gamma)} \right)$$

$$T_{\text{tw}}^{(\Gamma)} = \hat{Z}_I^{(\Gamma)} (T \otimes \mathbf{1})$$

Letting $e^{i\phi_\Gamma(z)} \equiv \chi_\Gamma(z)/d_\Gamma$

<i>Translation defects</i>	$z \in Z(G)$ defect	$\Gamma \in \text{Rep}(G)$ defect
$R_\Gamma U_z = (e^{i\phi_\Gamma(z)})^L U_z R_\Gamma$	$R_\Gamma T_{\text{tw}}^{(z)} = e^{i\phi_\Gamma(z)} T_{\text{tw}}^{(z)} R_\Gamma$	$T_{\text{tw}}^{(\Gamma)} U_z = e^{i\phi_\Gamma(z)} U_z T_{\text{tw}}^{(\Gamma)}$

- Generalizes the $G = \mathbb{Z}_2$ **projective algebra** of the ordinary quantum XY model

GAUGING WEB

