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quantum phases
1. How do we diagnose different quantum phases?

2. What are the allowed possible quantum phases?



A fundamental problem in QFT/CMT /HEP is to understand

quantum phases

1. How do we diagnose different quantum phases?
2. What are the allowed possible quantum phases?
Sometimes, phases are characterized by a symmetry
» Superfluids by U(1) boson number conservation

» Topological insulators by U(l)f and Zg symmetries

For such phases, symmetries provide answers to questions (1)

and (2).
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Quantum phases <= Generalized symmetries
Build-a-phase recipe
(1) Choose your generalized symmetries adjectives
a;—a,—aq—:++ dSymmetry
> e.g., n-form, (non-)invertible, subsystem, dipole, ...
(2) Specify SSB and SPT pattern

Ordered phases Topological insulators
Topological order Mazwell phases Higgs phases Fracton phases

Phases we have yet to name!



Which quantum phases are characterized by
ceneralized symmetries?

Why care?

1. Provides a novel and unifying perspective of quantum

phases
2. Guides us towards new quantum phases and models

3. Further develops a classification of quantum phases based

on symmetries (a “generalized Landau paradigm”)



Which quantum phases are characterized by

ceneralized symmetries?

2. Guides us towards new quantum phases and models



This talk: 1 + 1D SPT phases characterized by translation

and non-invertible symmetries

» Find a new class of entangled weak SPTs characterized by

projective non-invertible symmetries on the lattice



This talk: 1 + 1D SPT phases characterized by translation

and non-invertible symmetries

» Find a new class of entangled weak SPTs characterized by

projective non-invertible symmetries on the lattice

Outline

1. Review SPTs from a symmetry defect perspective

2. Simple example of an entangled weak SPT characterized

by a projective non-invertible symmetry

3. General discussion on projective Z(G) X Rep(G) symmetry
and (SPT-)LSM theorems



What are SPTs

An SPT phase is a gapped quantum phase protected by a
symmetry with a unique ground state on all closed spatial

maﬂlfOIdS [Chen, Gu, Liu, Wen 2011; Else, Nayak 2014; ---]

» Interesting physics can arise on boundaries and interfaces

between SPTs (e.g., topological order, gapless excitations)
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What are SPTs

An SPT phase is a gapped quantum phase protected by a
symmetry with a unique ground state on all closed spatial

maﬂlfOIdS [Chen, Gu, Liu, Wen 2011; Else, Nayak 2014; ---]

» Interesting physics can arise on boundaries and interfaces

between SPTs (e.g., topological order, gapless excitations)
SPTs are characterized by their bulk response to static probes

» Background gauge fields and symmetry defects

Ordinary insulator Topological insulator

[Qi, Hughes, Zhang 2008; ---]
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Symmetry defects are localized modifications to the

Hamiltonian Héezf)ect = H+ 6H(X) and other operators

» Moved using unitary operators (are topological defects)

() _ (Z) g7t
Hdefzect o UZlHdeflectUZI

» Implement the symmetry transformation across space

» Twisted boundary conditions (7,)" = Symmetry operator



1d closed chain in space with two qubits on each site j ~j+ L

acted on by Pauli operators X;, Z; and Xj, ZJ

L L

H,=~ ) (X;+X) H.=-Y (2.1 X2+ 72X 7,,)
j=1 j=1

|GSP>=|++"'+> |GSC>=Z}—1)92]|G80>=Z])~(]Z]+1|GSC>

» Both models have a unique symmetric gapped ground state

» There is a Z, X Zz symmetry U = HX] and U = H}ZJ
with U|GS,) = U|GS,) = |GS,) j



1d closed chain in space with two qubits on each site j ~j+ L

acted on by Pauli operators X, Z; and XJ-, ZJ

L L

H,=~ ) (X;+X%) H.=- Y (2.1 X2+ 2 X Z)
j=1 j=1

|Gsp>=|++"'+> |GSC>:Z]—l)(szlGSc>:Z]Xv]Z]+1|GSC>

H, and H_ are both in a Z, X 7, SPT phase



Are H, and H, in different Z, X Z, SPT phases?

We can check by inserting a U symmetry defect at (L,1)

» Gives rise to U-twisted boundary conditions: Z;,;, = — Z,

1. H, is unaffected, so its ground state still satisfies

2. H.becomes H.+ 27, X, Z,, and its ground state satisfies

U|GS,.;) =+ |GS,.;) 0|GS,.p) = — |GS,.0)



Difterent responses imply that H, and H, are in

different Z, x Z, SPT phases

[Chen, Lu, Vishwanath 2013; Gaiotto, Johnson-Freyd 2017; Wang, Ning, Cheng 2021]

Low-energy EFTs of H, and H,

ZJAAl=1  ZJA Al = (=1)/Av4

1. H, is unaffected, so its ground state still satisfies

2. H.becomes H.+ 27, X, Z,, and its ground state satisfies

U|GS,.;) =+ |GS,.;) 0|GS,.p) = — |GS,.0)



1d periodic lattice with a qubit on each site j ~j+ L
Ho=-YX vs. H=+ )X
J J

» Both have a unique gapped ground state [GSy) =®; | £ )

» Symmetries: Z, X Z; with U = HX] and T:j —j+1
J

H_ and H_ are both in Z, X Z; SP'T' phases



1d periodic lattice with a qubit on each site j ~j+ L
Ho=-YX vs. H =+ )X
J J

» Both have a unique gapped ground state |GS,) = ®; | + )

» Symmetries: Z, X Z, with U= | X. and T:j—>j+ 1
2 L ]
J

H_ and H_ are both in Z, X Z; SP'T' phases

SPTs characterized by translations are called weak SPTs

H_and H_ are both in Z, weak SP'T phases
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» Translation operator becomes T = X; Ty tooifree (I = U)
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Are H, and H_ in different Z, weak SP'T' phases?

Let’s insert a U = HX] symmetry defect at (L,1)
J

» Neither H, or H_ are modified by Z,,; = — Z

» Translation operator becomes T = X; Ty tooifree (I = U)

Even L,
7, symmetry defect




Translation defect carries Z, symmetry charge in |GS_)

» Inserting a translation defect is done by

ThL=1->Ttr=T7T —= L—>L-1

Even L,
7, symmetry defect

Odd L

Even L

U|GS,) = +£]GS.)

T|GS,) = +|GS.,) +|GS,) +|GS,)



A curious Hamiltonian

1d periodic lattice with a single qubit and Z, qudit on each

site ] ~ ] + L [sP, Lam, Aksoy arXiv:2409.18113]
> ¢, 0% act on qubits: (6%)? = (69)? = 1 and 6% = — %67

> X,Z act on Z, qudits: X*=Z*=1and ZX =i XZ



A curious Hamiltonian

1d periodic lattice with a single qubit and Z, qudit on each

site ] ~ ] + L [sP, Lam, Aksoy arXiv:2409.18113]
> ¢, 0% act on qubits: (6%)? = (69)? = 1 and 6% = — %67

> X,Z act on Z, qudits: X*=Z*=1and ZX =i XZ

ZGX j+1 071 '_Z(ZJ_ZJT)GJ'Z(ZJ' _ZJL)
J

» Cactsas X - X and Z — Z°

» Is a sum of commuting terms and has a unique gapped

oround state



A curious Hamiltonian

1d periodic lattice with a single qubit and Z, qudit on each
site ] ~ ] + L sP. Lam, Aksoy arXiv:2409.18113)

> ¢%, 0% act on qubits: (6% = (69)* = 1 and 6% = — ¢'c

> X,Z act on Z, qudits: X*=Z*=1and ZX =i1XZ

I
H== 2,0/ Gl +7 24— 20 G = 7))
J '

|GS> Z ZJ ;i (@ — @;1) ®|0 — ( 1)§0] = — 1 ]+1>

{9;=0,1}
{a = 0,2}




H=—ZGJX ]_|_1 1+ Z(Z ZT)G( _ij_l)

What are the symmetries of H?
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What are the symmetries of H?

» /; lattice translations T:j — j+ 1

» Three Z, symmetry operators
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J J J



1
H==) 0 j+1"ﬁ1+ZZ(ZJ_ZjT)UJZ(ZJ+1 ~Z)
J J

What are the symmetries of H?

» /; lattice translations T:j — j+ 1

» Three Z, symmetry operators
_ 2 _ _ 2
=Tl &=Tl¢  &=]I7
J J J

> W symmetry operator

R, = % (1+R) (1+R,) [z
J



> W symmetry operator

R = % (1+R)) (14 Rz)HZjHJ;lUé
j
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Rg 1s a non-invertible symmetry operator

> Rily)y=—|w) or Rly)=—y) = Rely) =0

» Rp have zero-eigenvalues = R is non-invertible

> & symmetry operator

R = % (1+R)) (1 +R2)HZJ_H’;;16£
j



A curious SPT

These symmetry operators obey
U=1, R°=1, R:=1+R +R +RR,, RgR =RR:=R:
UR: = (—1D*Rc U

» Form a (projective) Z, X Rep(Dg) symmetry
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A curious SPT

These symmetry operators obey
U=1, R°=1, R:=1+R +R +RR,, RgR =RR:=R:
UR: = (—1D*Rc U

» Form a (projective) Z, X Rep(Dg) symmetry

Ground state satisfies:

T|GS) =+ |GS) U|GS) =+ |GS) R;|GS) =+ |GS)
+|GS), L 2|1GS), L

R,|GS) = ) even R.|GS) = +2 | GS) even
—|GS), L odd 0, L odd




A curious SPT

H is in a Z, X Rep(Dg) weak SPT phase

» Translation defects carry Rep(Dg) symmetry charge in | GS)

» Spoiler: R |GS) =0 for odd L = SPT-LSM theorem

Ground state satisfies:

T|GS) =+ |GS) U|GS) =+ |GS) R,|GS) =+ |GS)
+|GS), L 2|1GS), L

R,|GS) = ) even R.|GS) = +2 | GS) even
—|GS), L odd 0, L odd




This SPT' is characterized by a projective symmetry:

URr=—-R:U (odd L)
Projective unitary symmetries U,U, = e?U,U, forbid SPTs
» Assume non-degenerate symmetric ground state:

L. U U,|ly) = |y) } Contradicts

2. UU,ly) =’ UU, ly) = e’y) assumpiion



This SPT' is characterized by a projective symmetry:
URr=—-R:U (odd L)
Projective unitary symmetries U,U, = e?U,U, forbid SPTs

» Assume non-degenerate symmetric ground state:

L. U U,|ly) = |y) } Contradicts

2. UU,ly) =’ UU, ly) = e’y) assumpiion

Projective non-invertible symmetries are compatible with SPTs

» Loophole: symmetry operator has zero-eigenvalues

» UR: = (—1)"ReU = R:|GS¢pr) = 0 when L is odd



The projective Z, X Rep(Dg) symmetry is a special case of a

more general projective Z(G) X Rep(G) symmetry
» Z(G) is the center of a finite group G

» Rep(G) is the fusion category of representations of G



The projective Z, X Rep(Dg) symmetry is a special case of a

more general projective Z(G) X Rep(G) symmetry

» Z(G) is the center of a finite group G

» Rep(G) is the fusion category of representations of G

Z(G) symmetry operator U,, with z € Z(G), satisfies
uu,=0,,

Rep(G) symmetry operator Ry, with I' an irrep of G, satisfies
Rr X Ry, =Ry or, =Rg nor = ) NGRp
C

» Non-invertible symmetry when G is non-Abelian



The projectivity arises through the relation

RrU, = ()Y U R with €'%t@ = Tr[I'(2)]/ df



The projectivity arises through the relation
RrU, = (9" U R with €7@ = Tr[['(2)]/ dr

e.g., €9 when G = 72, (Z(Z,) = Z,)
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The projectivity arises through the relation
RrU, = (9" U R with €7@ = Tr[['(2)]/ dr

e.g., %@ when G = Dy (Z(Dg) = Z,)

Explicit expressions of U, and Ry for the Hilbert space ®C|G|
J

UZ = Z |ng '",ZgL><81, °°°78L| Rp = Z Tr[I'(gy---g;)] |81» "°>8L><81» "'a8L|
{8} 18}



RU, = (e'Pr@)L U Ry

There is an Lieb-Schultz-Mattis (LSM) theorem when e'?r® is

[---; Matsui 2008; Chen, Gu, Wen 2010;
Yao, Oshikawa 2020; Ogata, Tasaki 2021;
Seifnashri 2023; Kapustin, Sopenko 2024]

» The LSM theorem forbids SPT phases

non-trivial for a unitary Ry



There is an Lieb-Schultz-Mattis (LSM) theorem when e'?r® is

[---; Matsui 2008; Chen, Gu, Wen 2010;
Yao, Oshikawa 2020; Ogata, Tasaki 2021;
Seifnashri 2023; Kapustin, Sopenko 2024]

non-trivial for a unitary Ry

» The LSM theorem forbids SPT phases

When there is no LSM theorem, the projective algebra gives

. - [Lu 2017; Yang, Jiang, Vishwanath, Ran
I'1sSE tO all SPT LSM theorem 2017; Lu, Ran, Oshikawa 2017; --- |

> RpU, = = (el/rl)L U.Rr forces any SPT state to satisty
R | GS) = 0 for nontrivial (e'Pr)L

» Any SPT state must have non-zero entanglement



SPT-LSM theorem

To prove this SPT-LSM theorem, we

1. Use that the Z(G) symmetry is on-site:
U, = H Uj(Z) which satisfies RFU].(Z) = el#r@ UJ.(Z)RF
J

2. Assume that any unique gapped ground state|GS)
satisfies R-|GS) # 0 for some L = L* (eid’F(Z)L* = 1)



SPT-LSM theorem

To prove this SPT-LSM theorem, we

1. Use that the Z(G) symmetry is on-site:

U, = H U].(Z) which satisfies RFU].(Z) = el#r@ UJ.(Z)RF
J

2. Assume that any unique gapped ground state|GS)
satisfies R-|GS) # 0 for some L = L* (eiCbF(Z)L* = 1)

FEasy to prove assumption for product states in X C|G|, where

Rr= ) Tr[T(g, 81181 8 )(81 - 8L
{gj}

but it is true as long as there is an IR TQFT description



SPT-LSM theorem

If there is a unique gapped |GS) that is a product state:
> U_|GS) =|GS) = Uj(Z)lGS): | GS)
Using the assumption, R-|GS) = A-| GS) at L = L*:
1. RFU].(Z) |GS) = R-| GS) = 4| GS)
} Contradiction

9 RFUj(z) |GS) = elfr(2) Uj(z) R-|GS) = ,1F61¢r(z) |GS)



SPT-LSM theorem

If there is a unique gapped |GS) that is a product state:
> U_|GS) =|GS) = Uj(Z)lGS): | GS)
Using the assumption, R-|GS) = A-| GS) at L = L*:
1. RFU].(Z) |GS) = R-|GS) = 1| GS)
. . Contradiction
9 RFUj(z) |GS) = elfr(2) Uj(z) R-|GS) = ,1F61¢r(z) |GS)

—> (Cannot be an SPT state that is a product state at L = L*



SPT-LSM theorem

If there is a unique gapped |GS) that is a product state:
> U_|GS) =|GS) = Uj(Z)lGS): | GS)
Using the assumption, R-|GS) = A-| GS) at L = L*:
1. RFU].(Z) |GS) = R-|GS) = 1| GS)
. . Contradiction
9 RFUj(z) |GS) = elfr(2) Uj(z) R-|GS) = ,1F61¢r(z) |GS)

—> (Cannot be an SPT state that is a product state at L = L*

—> By locality, there cannot be an SPT state that is a
product state for any L



SPT-LLSM theorem

Therefore, the projective non-invertible symmetry

prevents a product state SPT

» All SPTs must have non-zero entanglement

We argue that the projectivity always causes translation

defects to carry nontrivial Rep(G) charge in SPT states




We found a new class of entangled weak SPTs characterized

by a projective Z(G) X Rep(G) non-invertible symmetry

1. An exactly solvable model in a weak SPT phase
characterized by a projective Z, X Rep(Dg) symmetry

2. General discussion on projective Z(G) X Rep(G) weak SPTs
—> an SPT-LSM theorem

New quantum phases and models can be discovered using

generalized symmetries as a guide!

SP, Lam, Aksoy arXiv:2409.18113
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Whether there is an (SPT)-LSM theorem depends on G:

no ( No projective \
@S Z(G) non-trivial? ) gy algebra
ng G = SS) D107 Ay
l yes

( -G G) yes SPT-LSM constraint
c.g., G D87 Q87
l o

CLSM anomaly e.g., G = Abelian, D, Dich




Non-invertible weak SPT

If there is an SPT phase, R-U, = (€r9)E U Ry forces its
ground state to satisfy R-|GS) = 0 for nontrivial (e'Pr@)l



Non-invertible weak SPT

If there is an SPT phase, R-U, = (€r9)E U Ry forces its
ground state to satisfy R-|GS) = 0 for nontrivial (e'Pr@)l

Two possibilities:
1. An SPT state satisfies R-|GS) = 0 for all system sizes L

2. For L = L* where all (') = 1, an SPT state satisfies
R-|GS) = A-|GS), but R-|GS) =0 for L # L*



Non-invertible weak SPT

If there is an SPT phase, R-U, = (€r9)E U Ry forces its
ground state to satisfy R-|GS) = 0 for nontrivial (e'Pr@)l

Two possibilities:
1. An SPT state satisfies R-|GS) = 0 for all system sizes L

2. For L = L* where all (') = 1, an SPT state satisfies
R-|GS) = A-|GS), but R-|GS) =0 for L # L*

The first is incompatible with 1 + 1D TQFT, where (Rj-) = df-

|Chang, Lin, Shao, Wang, Yin 201§|

» Reasonable to assume that this SPT state at some L = L*
is described by a TQFT in the IR



Non-invertible weak SPT

fAt L =L* SPTs satisty R-|GS) = A-| GS) \
At L=L*+1, SPTs satisfy R-|GS) =0

» All SPT states have translation defects dressed by
non-trivial Rep(G) symmetry charge

Q A a trivial SPT = SPT-LSM theorem j
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Dihedral group of order 8 Dg =~ <I’,S | r* = 5% = 1,rsr = s3>

» Four 1d reps 1, P, P,, P, =P, @ P, and one 2d irrep E

PRP,=1 EQE=1®&P,®&P,®P, EQP =P,QE=E
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B [Rep(Ds) X 23] = <0§7 73, Zj Zjq, 05 Ci10%,, X;° XJT+1>



Many-qubit model on a periodic chain with Hamiltonian

L
= *olt Y o
H=), Jojo +Kdlay,
J=1

» There is an LSM anomaly involving the Z7 X X7}

Symmetl“y |[Chen, Gu, Wen 2010; Ogata, Tasaki 2021]

U. = Haj?c, U, = Hajy , and lattice translations T
J J
» Manifests through the projective algebras cuens. seibers 2023

Translation defects 75 defect 7> defect

vU,=-Duu, | U,T=-TU,



A G-qudit is a |G |-level quantum mechanical system whose

states are |g) with g € G

» (G is a finite group, e.g. Z,, S;, Dg, SmallGroup(32,49)

Group based Pauli operators s 2oy

~ -]
» X operators labeled by group elements K [g =6 )

XO =Y [ghyn]  X©= |hg)h
h h

» 7 operators are MPOs labeled by irreps I': G — GL(d, C)

|
[ZO,5= Y [C)]apl hY(h| = am—zOmp (@ f= 1.2, dp)
' |




FExample: G = Z, where g€ {1,— 1} and I' € {1,1'}
X0 = XU = [z0],, =1
YD — YD = 5 ZV],, = o°

Group based Pauli operators satisty

1. X© X0 = Xen o X0 = X and X© X0 = ¥ X
- =

2. X® X0 = X0 X® iff g and h commute
4 B —>

3. X®[ZzD) 4= [T(@)], 2], X®

— S —, _
4. Unitarity: Y@©T = X(g)’ Y@©T = X(g)’ [Z(F)T Z(F)]aﬁ _ 5aﬂ



GROUP BASED XY MODEL

Group based Pauli operators are useful for constructing

quantum lattice HlOdGlS [Brell 2014; Albert et. al. 2021; Fechisin, Tantivasadakarn, Albert 2023]

Group based XY model: Consider a periodic 1d lattice of L
sites. On each site j resides a G-qudit and its Hamiltonian

L
_ (D)t 7(1) Y@ Y
Hyy = Z (ZJFTr (ZJ Zj+l> + ZKg X Xngrl) +he
J=1 I g
| |
Tr (2770) = 3 @0 e (e} = Yo HAN

{g} ‘ ‘

» LFor G = Z,, this is the ordinary quantum XY model



SYMMETRY OPERATORS

L

_)
Hyy= ) (2 J.Tr (ZW Z<F>> + 2 K, X<g> X;ﬂ) + he

J=1

Z; lattice translations: T@]-TT =04,

Various internal symmetries:

> Z(G) symmetry U, = [ | ?J@ with z € Z(G)

] |
L (I’ | \IB
» Rep(G) symmetry Rp = Tr(HZj(F)> ZOH 20 = o {20

j=1

Rra X Rrb — Rra®rb — R@c Ngbrc — Z NC?]?RFC
C



PROJECTIVE ALGEBRA FROM DEFECTS

4 R L)
_ (2) _ (1)
v, =]]x RF—Tr(HZ] )
J j=1
—> A
_ ) — 7(@)
T =XPT =2paen

Letting e'%r? = y(2)/d-

Translation defects| z € Z(G) defect [' € Rep(G) defect

RF Uz — (eid)r(Z))L UZRF erl(‘)f]) - ei¢r(Z)71(\zz&r)RF Tt(\g) Uz — eid)r(Z) Uz ﬂg)

» (Generalizes the G = Z, projective algebra of the ordinary

quantum XY model



GAUGING WEB

@ep >< Z1, with projective algebra
Rep(G / \

Non-
non-Abliean , .on
Finol R > invertible

1pole ( (G x Z(G))xZg, ( ep(G ) X L) dipole

symmetry

symmetry
Z(G) \ / Rep(G)

(G X Z(G) x non-invertible translations)




