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One of the most elementary questions in the quantum physics

of many degrees of freedom:

» (Given a fixed microscopic set up, which macroscopic

phenomena can arise?

» (Central to various areas of cond-mat, hep-th, and math-ph
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of many degrees of freedom:
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phenomena can arise?
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Prototypical example: quantum phases of matter

Microscopic —_ Macroscopic

Spatial dimension {Quantum phases}

Degrees of freedom

Symmetries
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The set {Quantum phases} is generally very complicated

» Partition it based on the phases’ low-energy spectra

Trivial Non-trivial

Gapless phase

gapped phase gapped phase *

Energy

0

* Includes topological order



Gifts from anomalies

Definition: the microscopic data has an anomaly if there

exists an obstruction to realizing a trivial gapped phase

» LEvery quantum phase is then non-trivial: has long-range

order, topological order, is gapless, etc.



Gifts from anomalies

Definition: the microscopic data has an anomaly if there

exists an obstruction to realizing a trivial gapped phase

» LEvery quantum phase is then non-trivial: has long-range

order, topological order, is gapless, etc.

Anomalous symmetries are symmetries that are incompatible

with a trivial gapped symmetric phase.

» 'To realize a trivially gapped phase, the anomalous

symmetry must be explicitly broken



Gifts from anomalies

Important disclaimers

1. This definition is different from the “classical symmetry

fails to be a quantum symmetry”’ type anomaly

It is a generalization of 't Hooft anomalies in QFT,

which are obstructions to gauging a symmetry.

It is a popular definition for anomalous spacetime and

generalized symmetries

|[C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang, X. Yin ’18; X.-G. Wen ’18; R. Thorngren, Y. Wang '19; Y. Choi,
C. Cordova, P.-S. Hsin, H.T. Lam, S.-H. Shao 21; --- ; W. Shirley, C. Zhang, W. Ji, M. Levin 25 ]




Consider QM model with Hilbert space .7 and Hamiltonian H
» Assume there is a unitary G symmetry: U,,H| =0, g€ G

» Symmetry has an anomaly if, for |¢) € 7,
U,Uplt) = e @nT 1 1ap) elf(9:h) £ oi(F(9)+f(h)=f(gh)



Consider QM model with Hilbert space .7 and Hamiltonian H

» Assume there is a unitary G symmetry: U,,H| =0, g€ G

» Symmetry has an anomaly if, for |¢) € J7,

U,Up|tp) = 619(9»h>Ugh|¢> elf(9:h) £ oi(F(9)+f(h)=f(gh)
Proof:
1. Assume |gs) € S is a unique gapped ground state of H

= N

Therefore, U,Up|gs) = e/ MU, |gs) = !V 9T/ (1)|g5)
However, U,Uy,|gs) = €9 MU, |gs) = ! 09:n)T19h)g5)

Requires €99 = ¢l (J(9)+/(M)=1(9h) 5 contradiction
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Consider QM model with Hilbert space .7 and Hamiltonian H
» Assume there is a unitary G symmetry: U,,H| =0, g€ G
» Symmetry has an anomaly if, for |¢) € J7,
U,Uplt) = e @nT 1 1ap) elf0(9:h) £ oi(F(9)+F(h)=f(gh)
Example:
> A qubit, 57 = spanc{| T),| | )}, with Zo X Zs symmetry
Utnm) = X727 (n,m) € Zy X Ly

> Uinm) Uy my) = (—1)m”/U(n+n/7m+m/) —> anomaly

> Explicit check: U, ), H] =0 = H ((1) (1)>



Anomalies in >(04+1)D are much richer

» Include the anomalies from QM (i.e., projective

representations) and much more due to locality.
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The symmetries and anomalies in the IR are generally
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» For a given UV model, there are two types of IR

symmetries and anomalies:

1) Emergent: have no UV counterpart

2) Emanant: have a UV counterpart pr ches N seivers 22



What is the definition of emergent?

Emergent (adjective): Arising or coming into being; newly appearing or developing.

What is the definition of emanant?

Emanant (adjective): Flowing out, issuing forth, or radiating from a source.

» For a given UV model, there are two types of IR

symmetries and anomalies:

1) Emergent: have no UV counterpart

2) Emanant: have a UV counterpart i cuene x. seibers 29



Five possibilities
Emergent symmetry with no anomaly
Emergent symmetry with emergent anomaly
Emanant symmetry with no anomaly

Emanant symmetry with emanant anomaly

Emanant symmetry with emergent anomaly

1) Emergent: have no UV counterpart

2) Emanant: have a UV counterpart pr ches N seivers 22



Which QFT anomalies can be realized in lattice models?

» More precisely, can emanate from lattice anomalies



Which QFT anomalies can be realized in lattice models?

» More precisely, can emanate from lattice anomalies

Anomalies in Lattice to QFT Anomalies in
. EEEEEE——
lattice models anomaly map QFTs

» Surjectivity is not obvious, many elusive QFT anomalies



Which QFT anomalies can be realized in lattice models?

» More precisely, can emanate from lattice anomalies

Why care?

Practical reason: a better “lattice laboratory” for QFTs

to do numerics and have an intrinsic UV cutoff

Conceptual reason: the interplay between lattice models

and QFTs continually push each other forward.

Knowledge

P~

Lattice Continuum




New anomalies in lattice models of fermions

1) Lattice chiral anomaly: gateway to Onsager symmetries
|[Arkya Chatterjee, Sal Pace, Shu-Heng Shao, PRL 25 (arXiv:2409.12220)]

2) Lattice parity anomaly: symmetry-enforced Dirac cones
[Sal Pace, Luke Kim, Arkya Chatterjee, Shu-Heng Shao, arXiv:2505.04684]

3) Lattice LU(1) anomaly: symmetry-enforced Fermi surfaces
|[Luke Kim, Sal Pace, Shu-Heng Shao, to appear]
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New anomalies in lattice models of fermions

1) Lattice chiral anomaly: gateway to Onsager symmetries
|[Arkya Chatterjee, Sal Pace, Shu-Heng Shao, PRL 25 (arXiv:2409.12220)]
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Free, massless Dirac fermion ¥ = (¥p, Ug)'in 1 + 1D:
L =1V (0 + 0,)Vy, +1U] (9, — ,) ¥R
» Uy, (UR) is a left (right) moving complex Weyl fermion
Chiral (U(1)Y x U(1)?)/Zy symmetry
vector U(1)": \IJ}E — e+ie\If}: \IJE — e+19\1112

axial U(1)4: 0] s etlow! Ul o e lowl

> Axial charge Q“ = C’RQVC};, where C'r: YR +— \IJL



L =1V (0, + 0,)Vy, +1U] (9, — ,) ¥R
The chiral anomaly is an anomaly of (U(1)" x U(1)?)/Zs

> Oﬂe Of the OldGSt aﬂOmaheS iIl QFT [Schwinger ’59; Johnson ’63; -]



L =1V (0, + 0,)Vy, +1U] (9, — ,) ¥R
The chiral anomaly is an anomaly of (U(1)" x U(1)?)/Zs

> Oﬂe Of the OldGSt aﬂOmaheS iIl QFT [Schwinger ’59; Johnson ’63; -]

Manifests through anomalous current conservation

1
. A _
M JA = 2B

-
» The obstruction to a trivial gapped phase follows from

turn on Au

"I =0

1. Formally: 't Hooft’s anomaly matching argument

2. Physically: threading 27 flux creates Q* = 2 charge—a

left-moving particle and right-moving hole



Can the chiral anomaly be realized in a lattice model

with finite-dimensional™ local Hilbert spaces?

Bosonized version has been realized in infinite dim local Hilbert spaces [M. Cheng, N. Seiberg *22]
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Can the chiral anomaly be realized in a lattice model

with finite-dimensional™ local Hilbert spaces?

> Not verbatim by a lattice (U(1)Y x U(1)?)/Zs

symmetry

JY (tx), IR (ta))] ~ 1046 (x — )

More general question: Can the (U(1)Y x U(1)*)/Z,

symmetry and its chiral anomaly emanate from a lattice

model?

Y@S' [Arkya Chatterjee, Sal Pace, Shu-Heng Shao, PRL ’25 (arXiv:2409.12220)]

Bosonized version has been realized in infinite dim local Hilbert spaces [M. Cheng, N. Seiberg *22]



Complex fermions ¢; on sites j of length L 1d spatial lattice”

L
2
%:®C {ijc;r"}zdj,j’ 16, ¢} =0
g=1 I3
H = iz (C;-Cj_|_1 — c;f-ch)
j=1

Becomes free, massless Dirac fermion theory in IR

Assume L is even and periodic boundary conditions
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Complex fermions ¢; on sites j of length L 1d spatial lattice”

L
2
%ﬂ:@@ {ijc;r"}zdj,j’ 16, ¢} =0
g=1 I3
H = iz (C;L-Cj_|_1 — c;r-ch)
j=1

Becomes free, massless Dirac fermion theory in IR

» |In momentum space

W
H = Z wkc};ck
kCBZ k=0
W
wr = —2sin(k) -

Assume L is even and periodic boundary conditions



Complex fermions c¢; on sites j of length L 1d spatial lattice

L
2
H =Q)C {ejic)} =0 1¢j,¢7 ) =0
j=1 .
H = 12 (C;L-Cj_|_1 — C;r-_l_le)
7=1

Becomes free, massless Dirac fermion theory in IR

If the chiral anomaly emanates from a lattice anomaly,
the chiral (U(1)" x U(1)?)/Zy symmetry must

emanate from a lattice symmetry.

We need to build a UV to IR symmetry dictionary!




L L
H =1 E (C;-Cj_|_1 — C;r-_|_1Cj) Cl — ﬁ € JCJ'



: 1 .y
H = 12 (C;Cj+1 — c;r-ﬂcj) Cr = ﬁ Ze kjcj
7=1 j=1
= 1
U(1) fermion number symmetry Qo = Z <c;c] — 5)



: 1 .y
H = 12 (C;Cj+1 — c;r-ﬂcj) Cr = ﬁ Ze kjcj
7=1 j=1
= 1
U(1) fermion number symmetry Qo = Z <c;.cj — 5)

. j=1
» Real space transformation

0@ . ol s @lf¢!
J J
» Momentum space transtormation

Qo . c,i —> eiec};
» IR symmetry (look at k =0 and k = 7 )

i0 T T i0 1, T
elfQo . \IijR — e \I!L’R



Lattice symmetry emanates to, IR symmetry

eiGQo eieQV




H = iz (C;Cj+1 — c;r-ﬂcj) Cl = % Zeikjcj
j=1
Lattice translation symmetry:
» Real space transformation
I':cj—cjq
» Momentum space transtormation
T cp — e ¥ Cl.

» IR symmetry (look at k =0 and k = 7 )
1 Vi, Vg — YV, —VR



Lattice symmetry emanates to, IR symmetry

eiGQo eieQV

T QR _ T (QV-Q)




Lattice symmetry emanates to, IR symmetry

olf0Qo eieQV
T QR _ T (QV-Q)

e'™@Rr generates an anomalous chiral symmetry in the IR

> 7% emanates from lattice translations

» But T is anomaly-free: this IR anomaly is emergent




Be real ©

Let’s decompose c;into real (Majorana) fermions a; = a;r- and
b; = b;f. to search for other useful symmetries
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j=1



Be real ©

Let’s decompose c;into real (Majorana) fermions a; = a;r- and

b; = b;f. to search for other useful symmetries

1 .
cj =5 (a;+ib)  {aja} =205, {bj, by} =205
. L
e 1
Hamiltonian becomes H = 5 Z(ajajﬂ +b;b41)
j=1

» The ajand b; Majoranas are decoupled!
» The model has Majorana translation symmetries
1, : aj,bj — &j—l—labj

Tb : a,j,bj — aj,bj_|_1



The b Majorana lattice translation symmetry

» Real space transformation:

1 .
1y - Cj — 5 (CL]' + lbj_|_1)

» Momentum space transtormation
1 , 1 ik
Tb . CL = 5 (ak —I—Ibk) — 5 (ak —+ c klbk)
» [R symmetry (look at k=0 and &k = 7 )

1y - \IJL, VR — \IJL, \IJE



Lattice symmetry emanates to, IR symmetry

eiGQo eieQV
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Lattice symmetry emanates to, IR symmetry

eiHQo eieQV

ol TR — e%(QV—QA)

Cr




Lattice symmetry emanates to, IR symmetry

olf0Qo eieQV
ol TR — e%r RV —Q™)

Cr

. \V4 . A
ola (CrRQYCL) _ jiaQ




The IR vector and axial charges emanate from the conserved

charges .
, 1
> Lattice vector charge Qo = 5 Z a;b;
71=1
. L
. . 11
> Lattice axial charge ()1 = T,QoT, = = 5 Z a;ibjy1
j=1

1. Sum of local terms
2. Have integer-quantized eigenvalues

3. Generate locality preserving U(1) symmetries



The lattice vector and axial charges do not commute

Qo, Q1] #0 5 [QY, Q4 =0

Qo and () generate the Onsager algebra jousge s

. L . L
1 1
» Let Qn — 5 Zajbj+n and Gn — 5 Z(ajaj+n — bjbj—|—n>
71=1 71=1

[Qna Gm] — Ql(Qn—m — Qn—l—m)



The chiral (U(1)Y x U(1)?)/Zy symmetry emanates from
the Onsager symmetry (e'?¢0 l@@1)

Qn : G, 0

.
IR limit {Q n even IR limit
V4

Q4 n odd




The chiral (U(1)Y x U(1)?)/Zy symmetry emanates from
the Onsager symmetry (e'?¢0 l@@1)

Qn : G, 0

.
IR limit, {Q n even IR limit_
V4

Q4 n odd

Does the Onsager symmetry have a lattice anomaly that

matches the chiral anomaly?




We assume the Hamiltonian 1s local:
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We assume the Hamiltonian 1s local:

L
Hy=>"> g;nH;"

n j7=1

1 1 = . . .
1. e 291290 (g;,b,) = (a;_1,bj.1) invariance requires

Hj(n) to not have terms mixing a; and b; and g;n = gn
2. Under the €??° transformation
a; — cos(f)a; + sin(0)b; b; — cos(0)b; — sin(0)a,
—> Symmetric H J(n) are quadratic

H;™ = ia;a;p + ibibj



Hy=i) ) 9n(ajajin +bibjin)
n =1

» H, commutes with the entire Onsager symmetry — it 1s

the most general Onsager symmetric Hamiltonian



Hy=i) ) 9n(ajajin +bibjin)
n =1

» H, commutes with the entire Onsager symmetry — it 1s

the most general Onsager symmetric Hamiltonian

Every Onsager symmetric Hamiltonian H, is gapless

» |In momentum space:

H, = Z wkc};ck Wy = 429” sin(nk)

keBZ

» H, is never in a trivial gapped phase

» This Onsager symmetry has a lattice anomaly



The chiral anomaly emanates from the Onsager

symmetry’s lattice anomaly

» The fact that the lattice anomaly enforces

gaplessness is consistent—the chiral anomaly is a

local anomaly and enforces gaplessness in QFT
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Anomalies 101

1. Anomalies as obstructions to trivial gapped phases

2. Emergent vs emanant anomalies



Anomalies 101

1. Anomalies as obstructions to trivial gapped phases

2. Emergent vs emanant anomalies

Lattice chiral anomaly [Arkya Chatterjee, Sal Pace, Shu-Heng Shao, PRL 25 (arXiv:2409.12220)]
L

The simple tight-binding model H = iz (C;Cj_|_1 — C;L-ch)
j=1
1. Has a lattice vector and axial symmetry, which form the

Onsager algebra

2. Has a lattice anomaly that enforces gaplessness, from

which the chiral anomaly emanates



Other lattice anomalies from Onsager-like symmetries:

» Compact boson CFT anomalies in spin chains
[Sal Pace, Arkya Chatterjee, Shu-Heng Shao, SciPost Phys "25 (arXiv:2412.18606)]

» Witten’s SU(2) anomaly on the lattice

|L. Gioia, R. Thorngren, arXiv:2503.07708|

» Lattice parity anomaly: symmetry-enforced Dirac cones
|Sal Pace, Luke Kim, Arkya Chatterjee, Shu-Heng Shao, arXiv:2505.04684|

» Lattice LU(1) anomaly: symmetry-enforced Fermi surfaces
|[Luke Kim, Sal Pace, Shu-Heng Shao, to appear]




Back-up slides



In terms of complex fermions

L
1
» Lattice vector charge Qo = Z (c;r-cj — —>

, 2
71=1
» Lattice axial charge
L
Q1= 3 > (C;L'CjJrl —¢jC) i+ e — C}C}H)
j=1

» Generate locality preserving U(1) symmetries
eieQO L Cj = e_iHCj

. 1
'@ : ¢, > cos(a)cj — 5 sm(oz)(cj._l +cj_1 — cj-ﬂ + cjt1)



Consider model with a qubit on each site 5 of a length L ring

L
%:@CQ X]:X3—|—L Z]:Z]+L
j=1
Anomalous Zz; x Z% x (lattice translations) symmetry

L L
Ux = | [ X, Uz =] 2 T:j—j+1
j=1 j=1



Consider model with a qubit on each site 5 of a length L ring

L
%:@CQ X]:X3—|—L Z]:Z]+L
j=1
Anomalous Zz; x Z% x (lattice translations) symmetry

L L
Ux = | [ X, Uz =] 2 T:j—j+1
j=1 j=1

Manifestations of the anomaly:

» Ux and Uz have a QM anomaly in each unit cell

> UxUy = (-1)*U,Ux



Consider model with a qubit on each site 5 of a length L ring

L
A = Q)T Xj=Xjtr Zj = ZjtL
j=1
Anomalous Zz; x Z% x (lattice translations) symmetry
L L
Ux = | [ X, Uz =] 2 T:j—j+1
j=1 j=1

Every symmetric Hamiltonian cannot have a trivial gapped

phase

L
> c.g., XX chain H = » (X; X1+ Y;Yj11)
j=1
» (Called a Lieb-Schultz-Mattis (LSM) anomaly



The compact boson CFT at radius Ris a 1 + 1D CFT with

2
Lr = %aﬂa% b~ D+ 27
T
> Has a (UM x U(1)Y) x Z§ symmetry:
M—R2@ g7 = L oo C: o P



The compact boson CFT at radius Ris a 1 + 1D CFT with
RQ

ZLr = 4—8M<I>5’“<I> O~ O+ 27
T
> Has a (UM x U(1)Y) x Z§ symmetry:
M—R2@ JW—i 0" o C: o P
Ju_%uq) M_QWGW W

Anomalous symmetries:
> UM x UMY and ZY x ZY x 7§
» Manifestation of U(1)™ x U(1)" anomaly:

W turnonAﬁ/[\ W 1 M
oI =0 Y =




Anomalies of the effective IR theory either emerge from

nothing or emanate from an anomaly of the UV



Anomalies of the effective IR theory either emerge from

nothing or emanate from an anomaly of the UV

Example: XX spin chain =———p R = +/2 boson CFT

X C
72 7
Z M
Ly Lo
Translations 7578 ¢ ZM x 7V

[M. A. Metlitski, Thorngren '17; M. Cheng, N. Seiberg ’22]

> Anomaly of Z$™® is emergent

» Anomaly of Z3! x ZY x Z§ emanates from LSM anomaly



