

New anomalies in lattice models of fermions

Sal Pace

MIT

CTQM Theory Colloquium

Cultural background

One of the most elementary questions in the quantum physics of many degrees of freedom:

- Given a fixed **microscopic** set up, which **macroscopic** phenomena can arise?
- Central to various areas of cond-mat, hep-th, and math-ph

Cultural background

One of the most elementary questions in the quantum physics of many degrees of freedom:

- Given a fixed **microscopic** set up, which **macroscopic** phenomena can arise?
- Central to various areas of cond-mat, hep-th, and math-ph

Prototypical example: quantum phases of matter

Microscopic

Macroscopic

Spatial dimension

{Quantum phases}

Degrees of freedom

Symmetries

⋮

A first organization of quantum phases

The set {Quantum phases} is generally *very* complicated

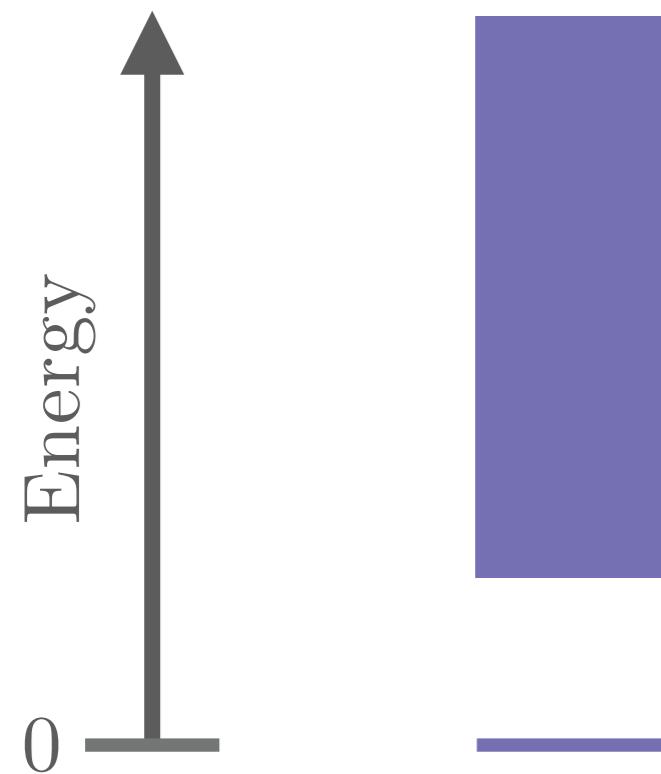
- Partition it based on the phases' **low-energy spectra**

A first organization of quantum phases

The set {Quantum phases} is generally *very* complicated

- Partition it based on the phases' **low-energy spectra**

Trivial
gapped phase



A first organization of quantum phases

The set {Quantum phases} is generally *very* complicated

- Partition it based on the phases' **low-energy spectra**

Trivial
gapped phase

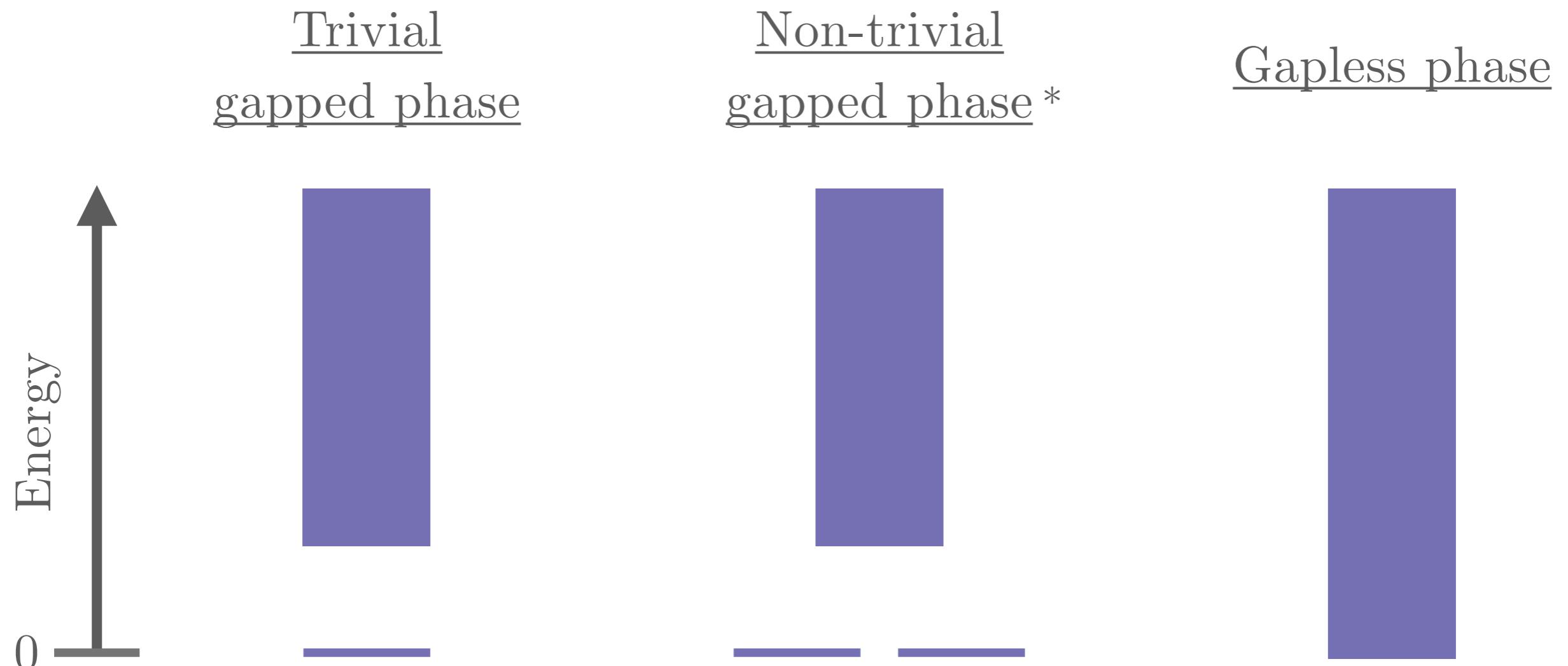
Non-trivial
gapped phase *

*Includes topological order

A first organization of quantum phases

The set {Quantum phases} is generally *very* complicated

- Partition it based on the phases' **low-energy spectra**



*Includes topological order

Gifts from anomalies

Definition: the **microscopic data** has an anomaly if there exists an **obstruction** to realizing a trivial gapped phase

- Every **quantum phase** is then non-trivial: has long-range order, topological order, is gapless, *etc.*

Gifts from anomalies

Definition: the **microscopic data** has an anomaly if there exists an **obstruction** to realizing a trivial gapped phase

- Every **quantum phase** is then non-trivial: has long-range order, topological order, is gapless, *etc.*

Anomalous symmetries are **symmetries** that are incompatible with a trivial gapped **symmetric phase**.

- To realize a trivially gapped phase, the **anomalous symmetry** must be explicitly broken

Gifts from anomalies

.....

Definition: the microscopic data has an anomaly if there

Important disclaimers

1. This **definition** is different from the “classical symmetry fails to be a quantum symmetry” type **anomaly**
2. It is a generalization of 't Hooft **anomalies** in QFT, which are obstructions to **gauging** a symmetry.
3. It is a popular **definition** for **anomalous** spacetime and generalized symmetries

[C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang, X. Yin '18; X.-G. Wen '18; R. Thorngren, Y. Wang '19; Y. Choi, C. Córdova, P.-S. Hsin, H.T. Lam, S.-H. Shao '21; ... ; W. Shirley, C. Zhang, W. Ji, M. Levin '25]

Anomalies in quantum mechanics

Consider QM model with Hilbert space \mathcal{H} and Hamiltonian H

- Assume there is a unitary G symmetry: $[U_g, H] = 0$, $g \in G$
- Symmetry has an **anomaly** if, for $|\psi\rangle \in \mathcal{H}$,

$$U_g U_h |\psi\rangle = e^{i\theta(g,h)} U_{gh} |\psi\rangle \quad e^{i\theta(g,h)} \neq e^{i(f(g)+f(h)-f(gh))}$$

Anomalies in quantum mechanics

Consider QM model with Hilbert space \mathcal{H} and Hamiltonian H

- Assume there is a unitary G symmetry: $[U_g, H] = 0$, $g \in G$
- Symmetry has an **anomaly** if, for $|\psi\rangle \in \mathcal{H}$,

$$U_g U_h |\psi\rangle = e^{i\theta(g,h)} U_{gh} |\psi\rangle \quad e^{i\theta(g,h)} \neq e^{i(f(g)+f(h)-f(gh))}$$

Proof:

1. Assume $|\text{gs}\rangle \in \mathcal{H}$ is a **unique gapped ground state** of H
2. Therefore, $U_g U_h |\text{gs}\rangle = e^{if(h)} U_g |\text{gs}\rangle = e^{i(f(g)+f(h))} |\text{gs}\rangle$
3. However, $U_g U_h |\text{gs}\rangle = e^{i\theta(g,h)} U_{gh} |\text{gs}\rangle = e^{i(\theta(g,h)+f(gh))} |\text{gs}\rangle$
4. Requires $e^{i\theta(g,h)} = e^{i(f(g)+f(h)-f(gh))} \implies \text{contradiction}$

Anomalies in quantum mechanics

Consider QM model with Hilbert space \mathcal{H} and Hamiltonian H

- Assume there is a unitary G symmetry: $[U_g, H] = 0$, $g \in G$
- Symmetry has an **anomaly** if, for $|\psi\rangle \in \mathcal{H}$,

$$U_g U_h |\psi\rangle = e^{i\theta(g,h)} U_{gh} |\psi\rangle \quad e^{i\theta(g,h)} \neq e^{i(f(g)+f(h)-f(gh))}$$

Example:

- A qubit, $\mathcal{H} = \text{span}_{\mathbb{C}}\{|\uparrow\rangle, |\downarrow\rangle\}$, with $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry

$$U_{(n,m)} = X^n Z^m \quad (n, m) \in \mathbb{Z}_2 \times \mathbb{Z}_2$$

- $U_{(n,m)} U_{(n',m')} = (-1)^{mn'} U_{(n+n', m+m')} \implies \text{anomaly}$

Anomalies in quantum mechanics

Consider QM model with Hilbert space \mathcal{H} and Hamiltonian H

- Assume there is a unitary G symmetry: $[U_g, H] = 0$, $g \in G$
- Symmetry has an **anomaly** if, for $|\psi\rangle \in \mathcal{H}$,

$$U_g U_h |\psi\rangle = e^{i\theta(g,h)} U_{gh} |\psi\rangle \quad e^{i\theta(g,h)} \neq e^{i(f(g)+f(h)-f(gh))}$$

Example:

- A qubit, $\mathcal{H} = \text{span}_{\mathbb{C}}\{|\uparrow\rangle, |\downarrow\rangle\}$, with $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry

$$U_{(n,m)} = X^n Z^m \quad (n, m) \in \mathbb{Z}_2 \times \mathbb{Z}_2$$

- $U_{(n,m)} U_{(n',m')} = (-1)^{mn'} U_{(n+n',m+m')} \implies$ **anomaly**
- Explicit check: $[U_{(n,m)}, H] = 0 \implies H \propto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Anomalies in quantum mechanics

Consider QM model with Hilbert space \mathcal{H} and Hamiltonian H

► Assume there is a unitary G symmetry: $[U_g, H] = 0, g \in G$

► Symmetry has an anomaly if for $|a/b\rangle \in \mathcal{H}$

Anomalies in $>(0+1)D$ are much richer

► Include the anomalies from QM (i.e., projective representations) and much more due to locality.

► A

$$U_{(n,m)} = X^n Z^m \quad (n, m) \in \mathbb{Z}_2 \times \mathbb{Z}_2$$

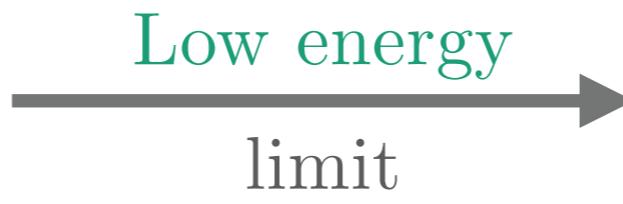
► $U_{(n,m)} U_{(n',m')} = (-1)^{mn'} U_{(n+n',m+m')} \implies$ anomaly

► Explicit check: $[U_{(n,m)}, H] = 0 \implies H \propto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Emergent vs emanant

UV model

symmetries
anomalies



IR model

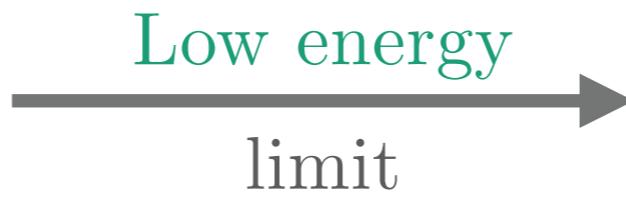
symmetries
anomalies

The symmetries and anomalies in the **IR** are generally different from those in the **UV**

Emergent vs emanant

UV model

symmetries
anomalies



IR model

symmetries
anomalies

The symmetries and anomalies in the **IR** are generally different from those in the **UV**

- For a given **UV** model, there are two types of **IR** symmetries and anomalies:
 - 1) **Emergent**: have no **UV** counterpart
 - 2) **Emanant**: have a **UV** counterpart [M. Cheng, N. Seiberg '22]

Emergent vs emanant

What is the definition of emergent?

Emergent (adjective): Arising or coming into being; newly appearing or developing.

What is the definition of emanant?

Emanant (adjective): Flowing out, issuing forth, or radiating from a source.

- For a given **UV** model, there are two types of **IR** symmetries and anomalies:
 - 1) **Emergent**: have no **UV** counterpart
 - 2) **Emanant**: have a **UV** counterpart [M. Cheng, N. Seiberg '22]

Emergent vs emanant

Five possibilities

Emergent symmetry with no anomaly

Emergent symmetry with emergent anomaly

Emanant symmetry with no anomaly

Emanant symmetry with emanant anomaly

► For symmetry with emanant anomaly

1) Emergent: have no **UV** counterpart

2) Emanant: have a **UV** counterpart [M. Cheng, N. Seiberg '22]

Lattice vs QFT anomalies

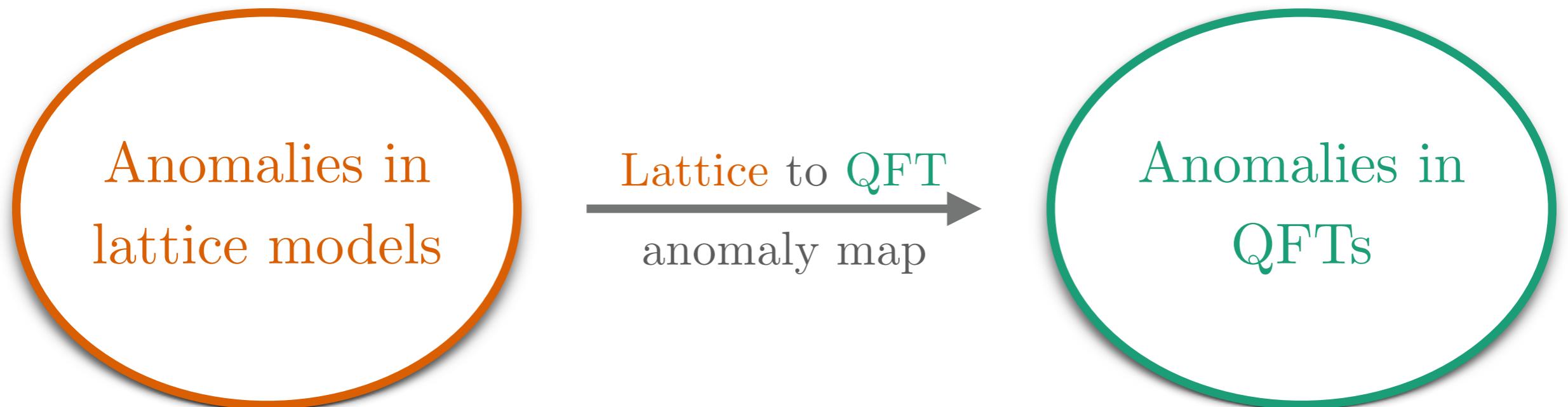
Which **QFT** anomalies can be realized in **lattice** models?

- More precisely, can **emanate** from **lattice** anomalies

Lattice vs QFT anomalies

Which **QFT** anomalies can be realized in **lattice** models?

- More precisely, can **emanate** from **lattice** anomalies



- Surjectivity is not obvious, many elusive **QFT** anomalies

Lattice vs QFT anomalies

Which **QFT** anomalies can be realized in **lattice** models?

- More precisely, can **emanate** from **lattice** anomalies

Why care?

Practical reason: a better “**lattice laboratory**” for **QFTs** to do numerics and have an intrinsic UV cutoff

Conceptual reason: the interplay between **lattice models** and **QFTs** continually push each other forward.

Knowledge

Lattice

Continuum

New anomalies in lattice models of fermions

1) Lattice chiral anomaly: gateway to Onsager symmetries

[Arkya Chatterjee, **Sal Pace**, Shu-Heng Shao, PRL '25 (arXiv:2409.12220)]

2) Lattice parity anomaly: symmetry-enforced Dirac cones

[**Sal Pace**, Luke Kim, Arkya Chatterjee, Shu-Heng Shao, arXiv:2505.04684]

3) Lattice LU(1) anomaly: symmetry-enforced Fermi surfaces

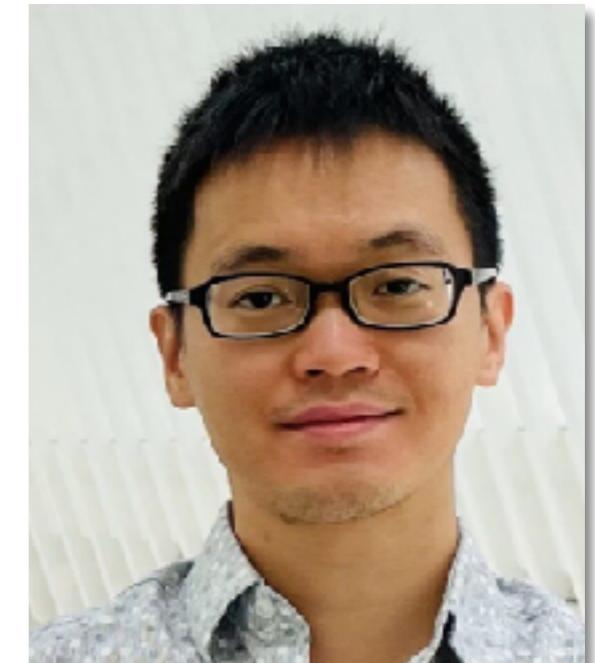
[Luke Kim, **Sal Pace**, Shu-Heng Shao, *to appear*]

Arkya Chatterjee

MIT → Stony Brook

Luke Kim

MIT



Shu-Heng Shao

MIT

New anomalies in lattice models of fermions

1) Lattice chiral anomaly: gateway to **Onsager symmetries**

[Arkya Chatterjee, **Sal Pace**, Shu-Heng Shao, PRL '25 (arXiv:2409.12220)]

2) Lattice parity anomaly: symmetry-enforced **Dirac cones**

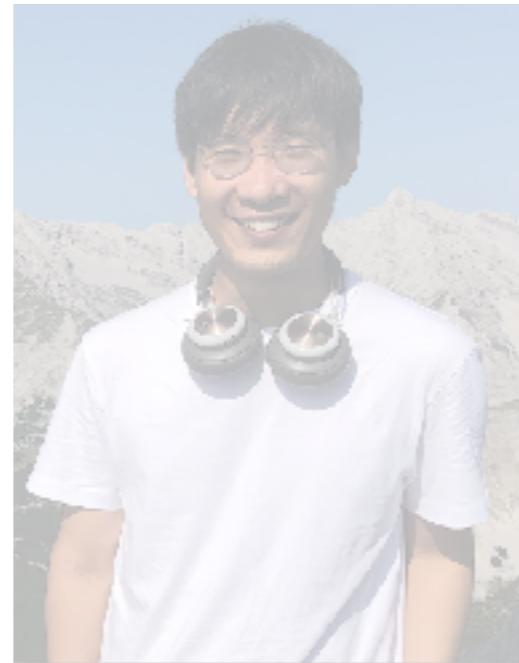
[**Sal Pace**, Luke Kim, Arkya Chatterjee, Shu-Heng Shao, arXiv:2505.04684]

3) Lattice $LU(1)$ anomaly: symmetry-enforced **Fermi surfaces**

[Luke Kim, **Sal Pace**, Shu-Heng Shao, *to appear*]

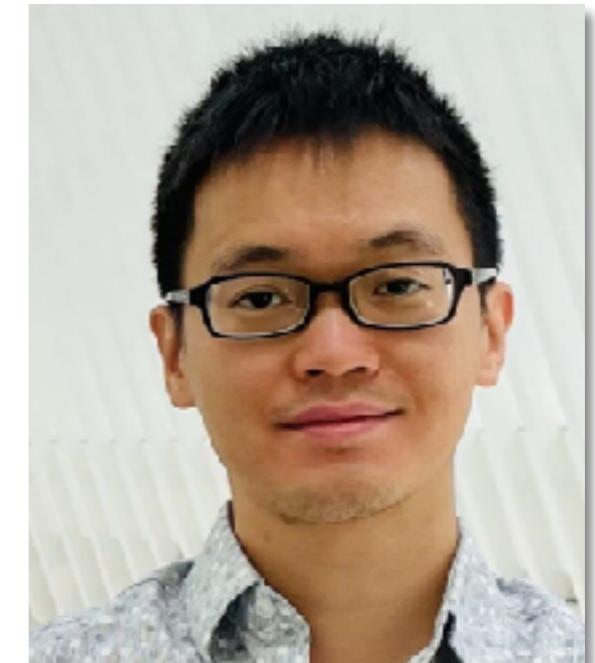
Arkya Chatterjee

MIT → Stony Brook



Luke Kim

MIT



Shu-Heng Shao

MIT

Dirac fermion field theory

Free, massless **Dirac fermion** $\Psi = (\Psi_L, \Psi_R)^T$ in 1 + 1D:

$$\mathcal{L} = i \Psi_L^\dagger (\partial_t + \partial_x) \Psi_L + i \Psi_R^\dagger (\partial_t - \partial_x) \Psi_R$$

► Ψ_L (Ψ_R) is a left (right) moving complex Weyl fermion

Dirac fermion field theory

Free, massless **Dirac fermion** $\Psi = (\Psi_L, \Psi_R)^T$ in 1 + 1D:

$$\mathcal{L} = i \Psi_L^\dagger (\partial_t + \partial_x) \Psi_L + i \Psi_R^\dagger (\partial_t - \partial_x) \Psi_R$$

► Ψ_L (Ψ_R) is a left (right) moving complex Weyl fermion

Chiral $(U(1)^V \times U(1)^A)/\mathbb{Z}_2$ symmetry

vector $U(1)^V$: $\Psi_L^\dagger \mapsto e^{+i\theta} \Psi_L^\dagger$ $\Psi_R^\dagger \mapsto e^{+i\theta} \Psi_R^\dagger$

axial $U(1)^A$: $\Psi_L^\dagger \mapsto e^{+i\alpha} \Psi_L^\dagger$ $\Psi_R^\dagger \mapsto e^{-i\alpha} \Psi_R^\dagger$

► Axial charge $Q^A = C_R Q^V C_R^\dagger$, where $C_R: \Psi_R \mapsto \Psi_R^\dagger$

The chiral anomaly

$$\mathcal{L} = i \Psi_L^\dagger (\partial_t + \partial_x) \Psi_L + i \Psi_R^\dagger (\partial_t - \partial_x) \Psi_R$$

The **chiral anomaly** is an anomaly of $(U(1)^V \times U(1)^A)/\mathbb{Z}_2$

- One of the oldest anomalies in **QFT** [Schwinger '59; Johnson '63; ...]

The chiral anomaly

$$\mathcal{L} = i \Psi_L^\dagger (\partial_t + \partial_x) \Psi_L + i \Psi_R^\dagger (\partial_t - \partial_x) \Psi_R$$

The **chiral anomaly** is an anomaly of $(U(1)^V \times U(1)^A)/\mathbb{Z}_2$

- One of the oldest anomalies in **QFT** [Schwinger '59; Johnson '63; ...]

Manifests through anomalous current conservation

$$\partial^\mu J_\mu^A = 0 \xrightarrow{\text{turn on } A_\mu} \partial^\mu J_\mu^A = \frac{1}{\pi} E$$

- The obstruction to a trivial gapped phase follows from
 1. Formally: 't Hooft's anomaly matching argument
 2. Physically: **threading 2π flux** creates $Q^A = 2$ charge—a left-moving particle and right-moving hole

The chiral anomaly

Can the **chiral anomaly** be realized in a **lattice** model
with **finite-dimensional*** local Hilbert spaces?

*Bosonized version has been realized in infinite dim local Hilbert spaces [M. Cheng, N. Seiberg '22]

The chiral anomaly

Can the **chiral anomaly** be realized in a **lattice** model with **finite-dimensional*** local Hilbert spaces?

- Not verbatim by a lattice $(U(1)^V \times U(1)^A)/\mathbb{Z}_2$ symmetry

$$[J_t^V(t, x), J_t^A(t, x')] \sim i \partial_x \delta(x - x')$$

*Bosonized version has been realized in infinite dim local Hilbert spaces [M. Cheng, N. Seiberg '22]

The chiral anomaly

Can the **chiral anomaly** be realized in a **lattice** model with **finite-dimensional*** local Hilbert spaces?

- Not verbatim by a lattice $(U(1)^V \times U(1)^A)/\mathbb{Z}_2$ symmetry
- $$[J_t^V(t, x), J_t^A(t, x')] \sim i \partial_x \delta(x - x')$$
- More general question: Can the $(U(1)^V \times U(1)^A)/\mathbb{Z}_2$ symmetry and its **chiral anomaly** emanate from a **lattice** model?

*Bosonized version has been realized in infinite dim local Hilbert spaces [M. Cheng, N. Seiberg '22]

The chiral anomaly

Can the **chiral anomaly** be realized in a **lattice** model with **finite-dimensional*** local Hilbert spaces?

- Not verbatim by a lattice $(U(1)^V \times U(1)^A)/\mathbb{Z}_2$ symmetry
- $$[J_t^V(t, x), J_t^A(t, x')] \sim i \partial_x \delta(x - x')$$
- More general question: Can the $(U(1)^V \times U(1)^A)/\mathbb{Z}_2$ symmetry and its **chiral anomaly** emanate from a **lattice** model?

Yes! [Arkya Chatterjee, Sal Pace, Shu-Heng Shao, PRL '25 (arXiv:2409.12220)]

*Bosonized version has been realized in infinite dim local Hilbert spaces [M. Cheng, N. Seiberg '22]

A simple lattice model

Complex fermions c_j on sites j of length L 1d spatial lattice*

$$\mathcal{H} = \bigotimes_{j=1}^L \mathbb{C}^2$$

$$\{c_j, c_{j'}^\dagger\} = \delta_{j,j'}$$

$$\{c_j, c_{j'}\} = 0$$

$$H = i \sum_{j=1}^L \left(c_j^\dagger c_{j+1} - c_{j+1}^\dagger c_j \right)$$

Becomes free, massless **Dirac fermion** theory in IR

*Assume L is even and periodic boundary conditions

A simple lattice model

Complex fermions c_j on sites j of length L 1d spatial lattice*

$$\mathcal{H} = \bigotimes_{j=1}^L \mathbb{C}^2$$

$$\{c_j, c_{j'}^\dagger\} = \delta_{j,j'}$$

$$\{c_j, c_{j'}\} = 0$$

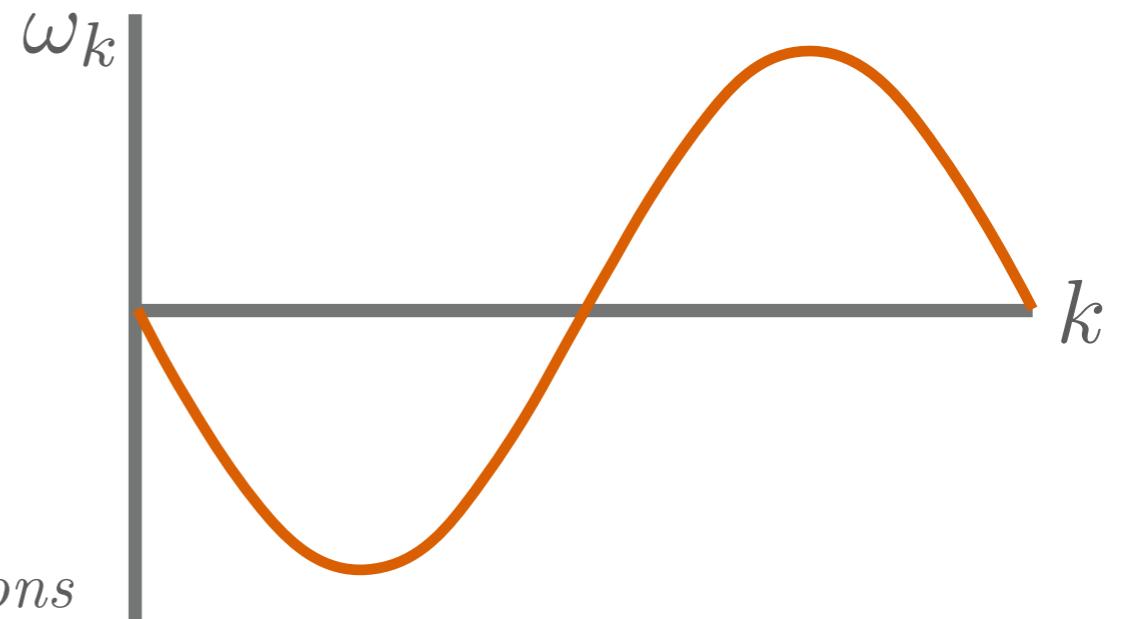
$$H = i \sum_{j=1}^L (c_j^\dagger c_{j+1} - c_{j+1}^\dagger c_j)$$

Becomes free, massless **Dirac fermion** theory in IR

- In momentum space

$$H = \sum_{k \in \text{BZ}} \omega_k c_k^\dagger c_k$$

$$\omega_k = -2 \sin(k)$$



*Assume L is even and periodic boundary conditions

A simple lattice model

Complex fermions c_j on sites j of length L 1d spatial lattice*

$$\mathcal{H} = \bigotimes_{j=1}^L \mathbb{C}^2$$

$$\{c_j, c_{j'}^\dagger\} = \delta_{j,j'}$$

$$\{c_j, c_{j'}\} = 0$$

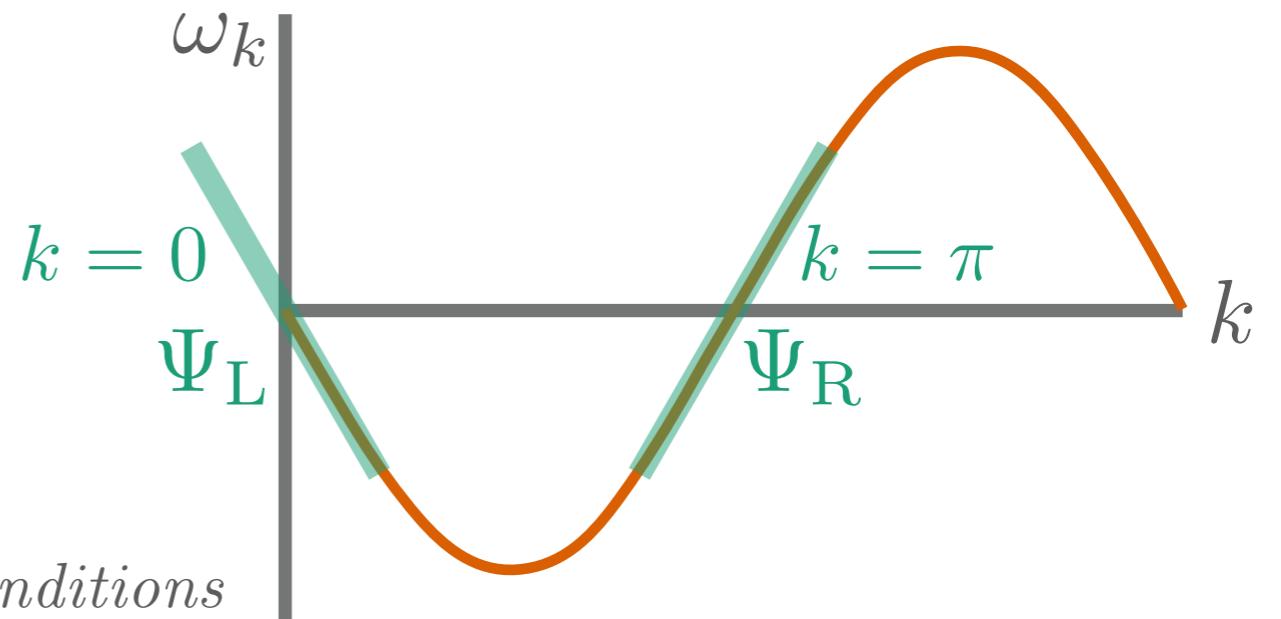
$$H = i \sum_{j=1}^L \left(c_j^\dagger c_{j+1} - c_{j+1}^\dagger c_j \right)$$

Becomes free, massless **Dirac fermion** theory in IR

- In momentum space

$$H = \sum_{k \in \text{BZ}} \omega_k c_k^\dagger c_k$$

$$\omega_k = -2 \sin(k)$$



*Assume L is even and periodic boundary conditions

A simple lattice model

Complex fermions c_j on sites j of length L 1d spatial lattice*

$$\mathcal{H} = \bigotimes_{j=1}^L \mathbb{C}^2$$

$$\{c_j, c_{j'}^\dagger\} = \delta_{j,j'}$$

$$\{c_j, c_{j'}\} = 0$$

$$H = i \sum_{j=1}^L \left(c_j^\dagger c_{j+1} - c_{j+1}^\dagger c_j \right)$$

Becomes free, massless **Dirac fermion** theory in IR

In

If the **chiral anomaly** emanates from a **lattice** anomaly, the chiral $(U(1)^V \times U(1)^A)/\mathbb{Z}_2$ symmetry must emanate from a **lattice** symmetry.

We need to build a **UV** to **IR** symmetry dictionary!

Emanant symmetries I

$$H = i \sum_{j=1}^L \left(c_j^\dagger c_{j+1} - c_{j+1}^\dagger c_j \right)$$

$$c_k = \frac{1}{\sqrt{L}} \sum_{j=1}^L e^{ikj} c_j$$

U(1) fermion number symmetry $N = \sum_{j=1}^L c_j^\dagger c_j$

Emanant symmetries I

$$H = i \sum_{j=1}^L \left(c_j^\dagger c_{j+1} - c_{j+1}^\dagger c_j \right)$$

$$c_k = \frac{1}{\sqrt{L}} \sum_{j=1}^L e^{ikj} c_j$$

U(1) fermion number symmetry $Q_0 = \sum_{j=1}^L \left(c_j^\dagger c_j - \frac{1}{2} \right)$

Emanant symmetries I

$$H = i \sum_{j=1}^L (c_j^\dagger c_{j+1} - c_{j+1}^\dagger c_j)$$

$$c_k = \frac{1}{\sqrt{L}} \sum_{j=1}^L e^{ikj} c_j$$

$$\text{U}(1) \text{ fermion number symmetry } Q_0 = \sum_{j=1}^L \left(c_j^\dagger c_j - \frac{1}{2} \right)$$

► Real space transformation

$$e^{i\theta Q_0} : c_j^\dagger \mapsto e^{i\theta} c_j^\dagger$$

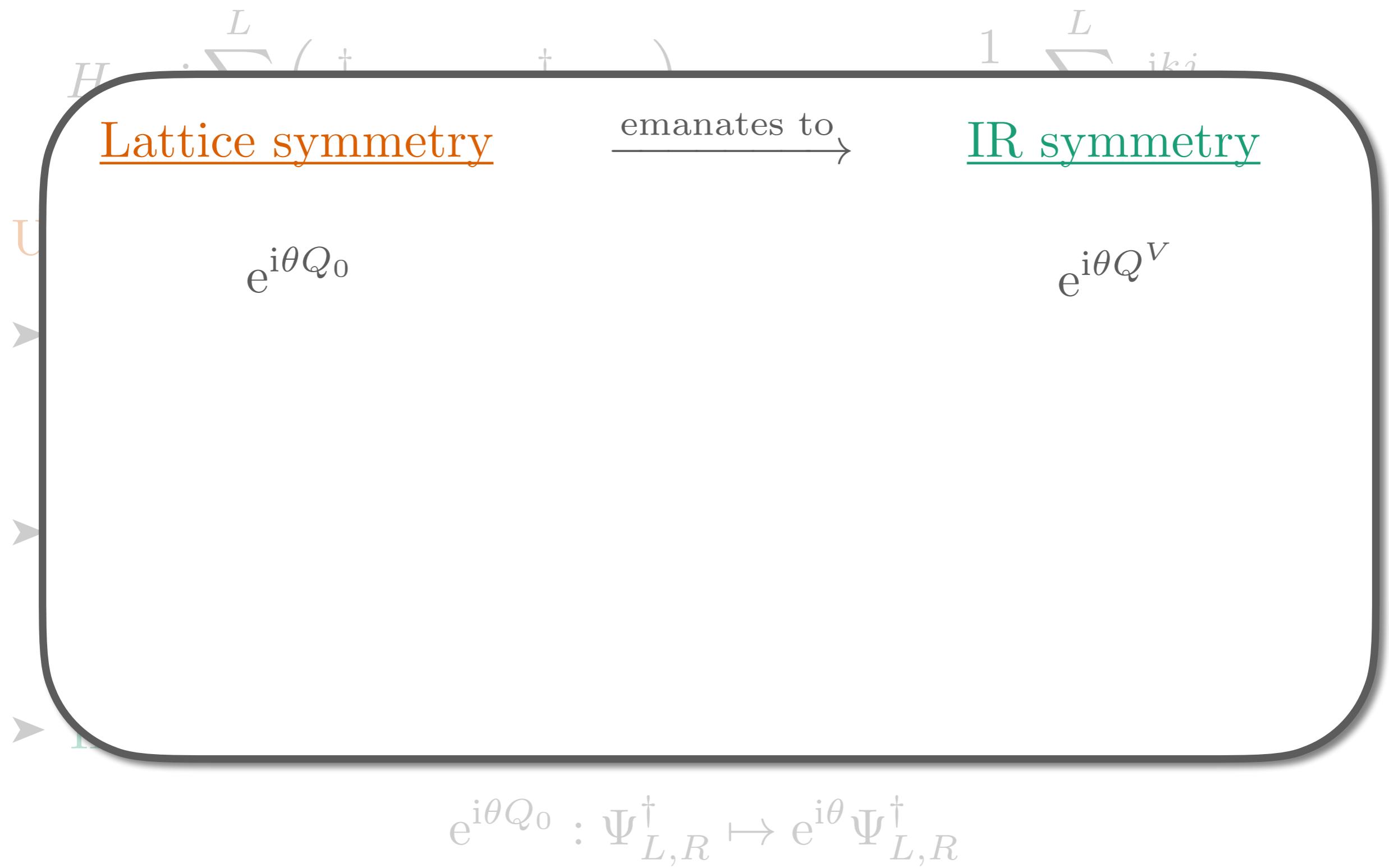
► Momentum space transformation

$$e^{i\theta Q_0} : c_k^\dagger \mapsto e^{i\theta} c_k^\dagger$$

► IR symmetry (look at $k = 0$ and $k = \pi$)

$$e^{i\theta Q_0} : \Psi_{L,R}^\dagger \mapsto e^{i\theta} \Psi_{L,R}^\dagger$$

Emenant symmetries I



Emanant symmetries II

$$H = i \sum_{j=1}^L (c_j^\dagger c_{j+1} - c_{j+1}^\dagger c_j)$$
$$c_k = \frac{1}{\sqrt{L}} \sum_{j=1}^L e^{ikj} c_j$$

Lattice translation symmetry:

- Real space transformation

$$T: c_j \mapsto c_{j+1}$$

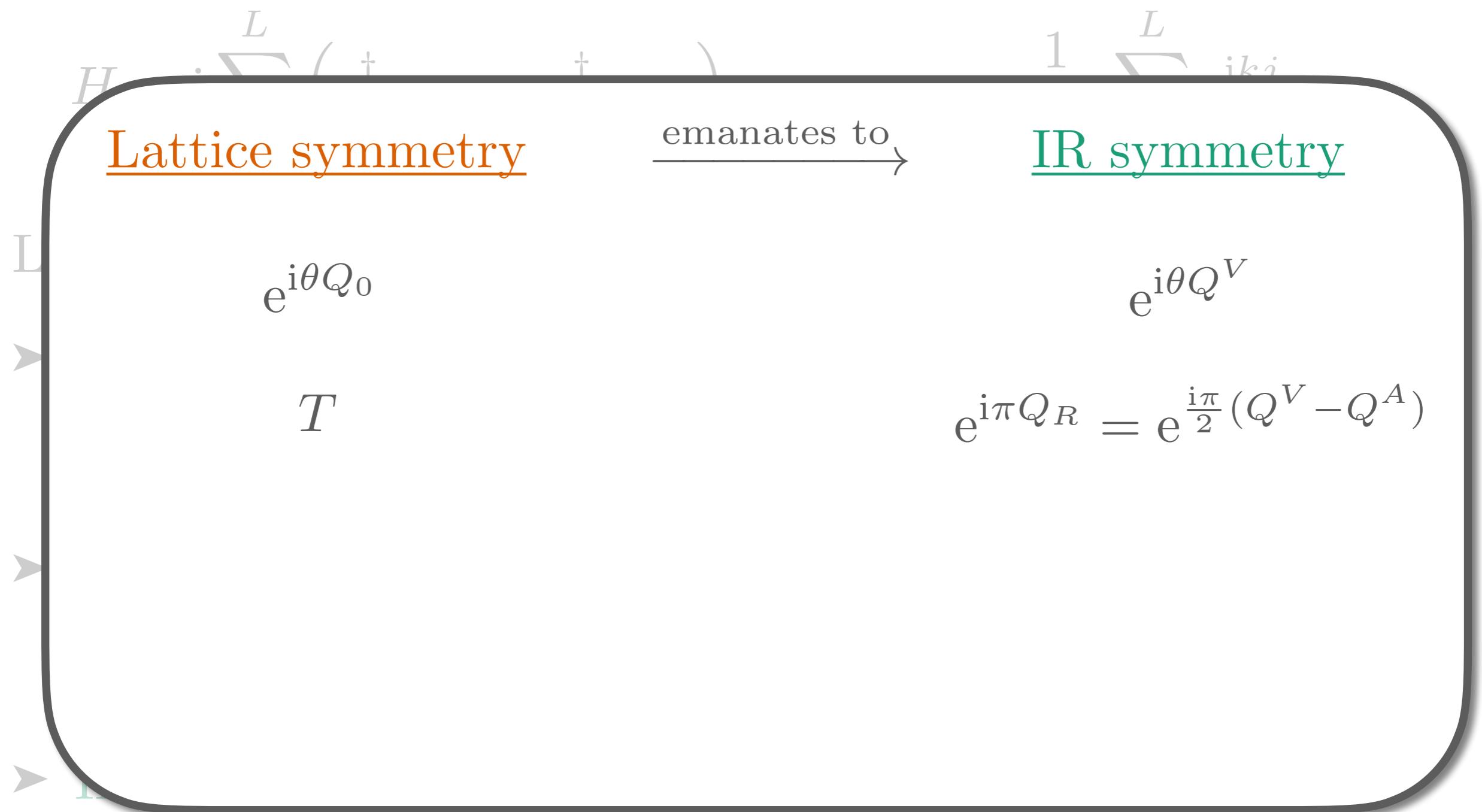
- Momentum space transformation

$$T: c_k \mapsto e^{-ik} c_k$$

- IR symmetry (look at $k = 0$ and $k = \pi$)

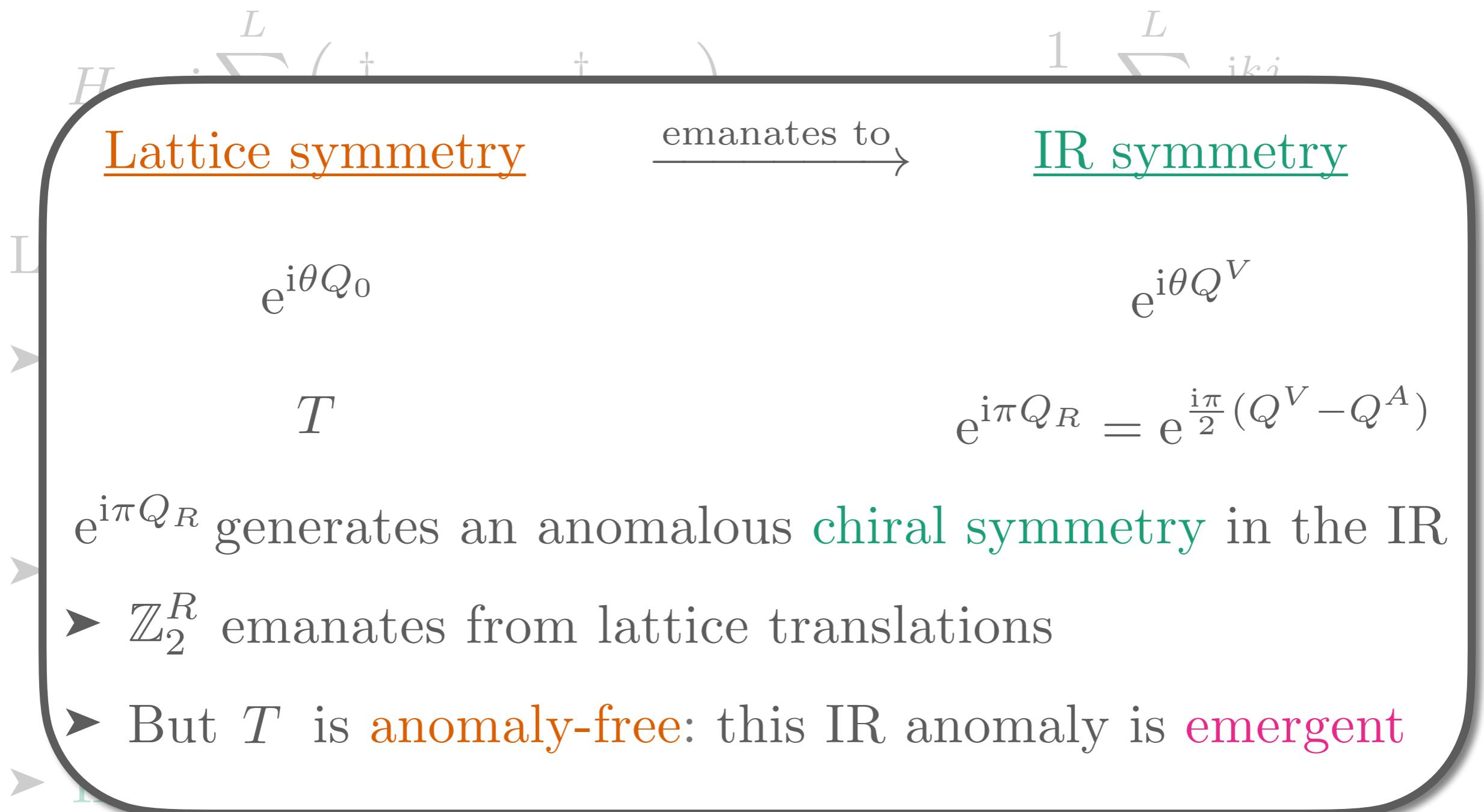
$$T: \Psi_L, \Psi_R \mapsto \Psi_L, -\Psi_R$$

Emenant symmetries II



$$T: \Psi_L, \Psi_R \mapsto \Psi_L, -\Psi_R$$

Emanant symmetries II



$$T: \Psi_L, \Psi_R \mapsto \Psi_L, -\Psi_R$$

Be real 😎

Let's decompose c_j into real (Majorana) fermions $a_j = a_j^\dagger$ and $b_j = b_j^\dagger$ to search for other useful **symmetries**

$$c_j = \frac{1}{2}(a_j + i b_j) \quad \{a_j, a_{j'}\} = 2\delta_{j,j'} \quad \{b_j, b_{j'}\} = 2\delta_{j,j'}$$

Hamiltonian becomes $H = \frac{i}{2} \sum_{j=1}^L (a_j a_{j+1} + b_j b_{j+1})$

Be real 😎

Let's decompose c_j into real (Majorana) fermions $a_j = a_j^\dagger$ and $b_j = b_j^\dagger$ to search for other useful **symmetries**

$$c_j = \frac{1}{2}(a_j + i b_j) \quad \{a_j, a_{j'}\} = 2\delta_{j,j'} \quad \{b_j, b_{j'}\} = 2\delta_{j,j'}$$

Hamiltonian becomes $H = \frac{i}{2} \sum_{j=1}^L (a_j a_{j+1} + b_j b_{j+1})$

- The a_j and b_j Majoranas are **decoupled!**
- The model has **Majorana translation symmetries**

$$T_a : a_j, b_j \mapsto a_{j+1}, b_j$$

$$T_b : a_j, b_j \mapsto a_j, b_{j+1}$$

Emanant symmetries III

$$H = \frac{i}{2} \sum_{j=1}^L (a_j a_{j+1} + b_j b_{j+1}) \quad c_j = \frac{1}{2} (a_j + i b_j)$$

The b Majorana **lattice translation symmetry**

► Real space transformation:

$$T_b : c_j \mapsto \frac{1}{2} (a_j + i b_{j+1})$$

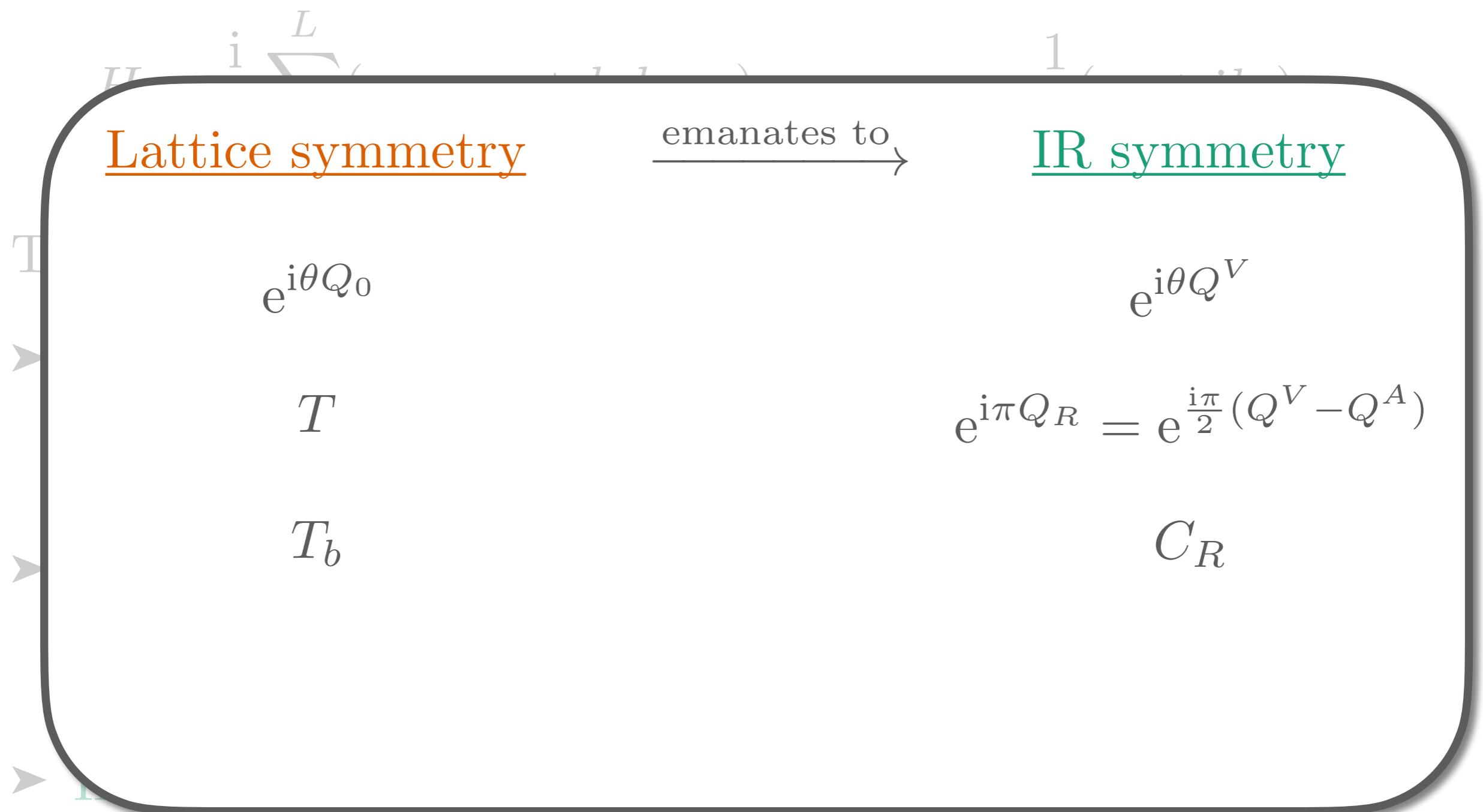
► Momentum space transformation

$$T_b : c_k = \frac{1}{2} (a_k + i b_k) \mapsto \frac{1}{2} (a_k + e^{-ik} i b_k)$$

► **IR** symmetry (look at $k = 0$ and $k = \pi$)

$$T_b : \Psi_L, \Psi_R \mapsto \Psi_L, \Psi_R^\dagger$$

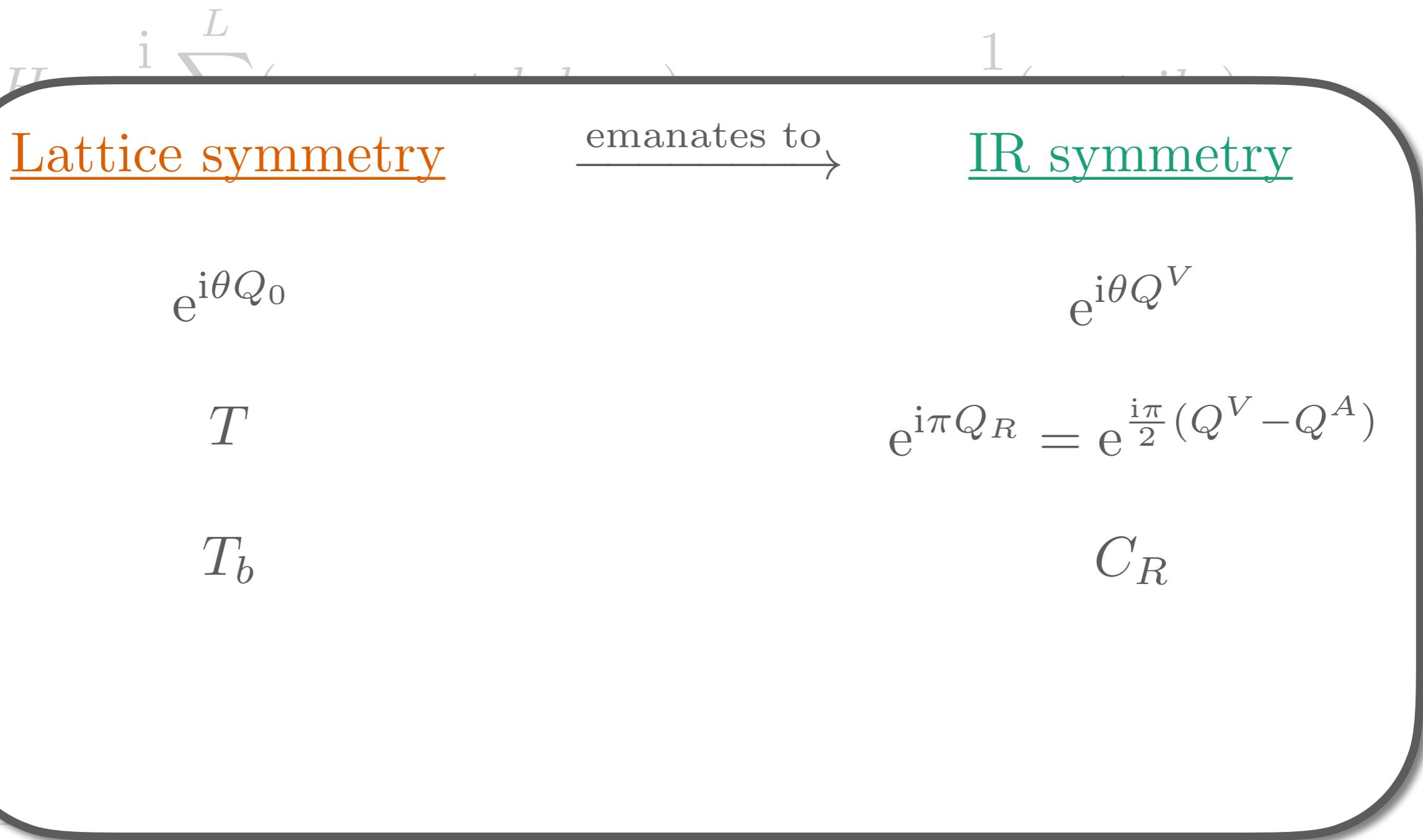
Emenant symmetries III



$$T_b : \Psi_L, \Psi_R \mapsto \Psi_L, \Psi_R^\dagger$$

Emenant symmetries III

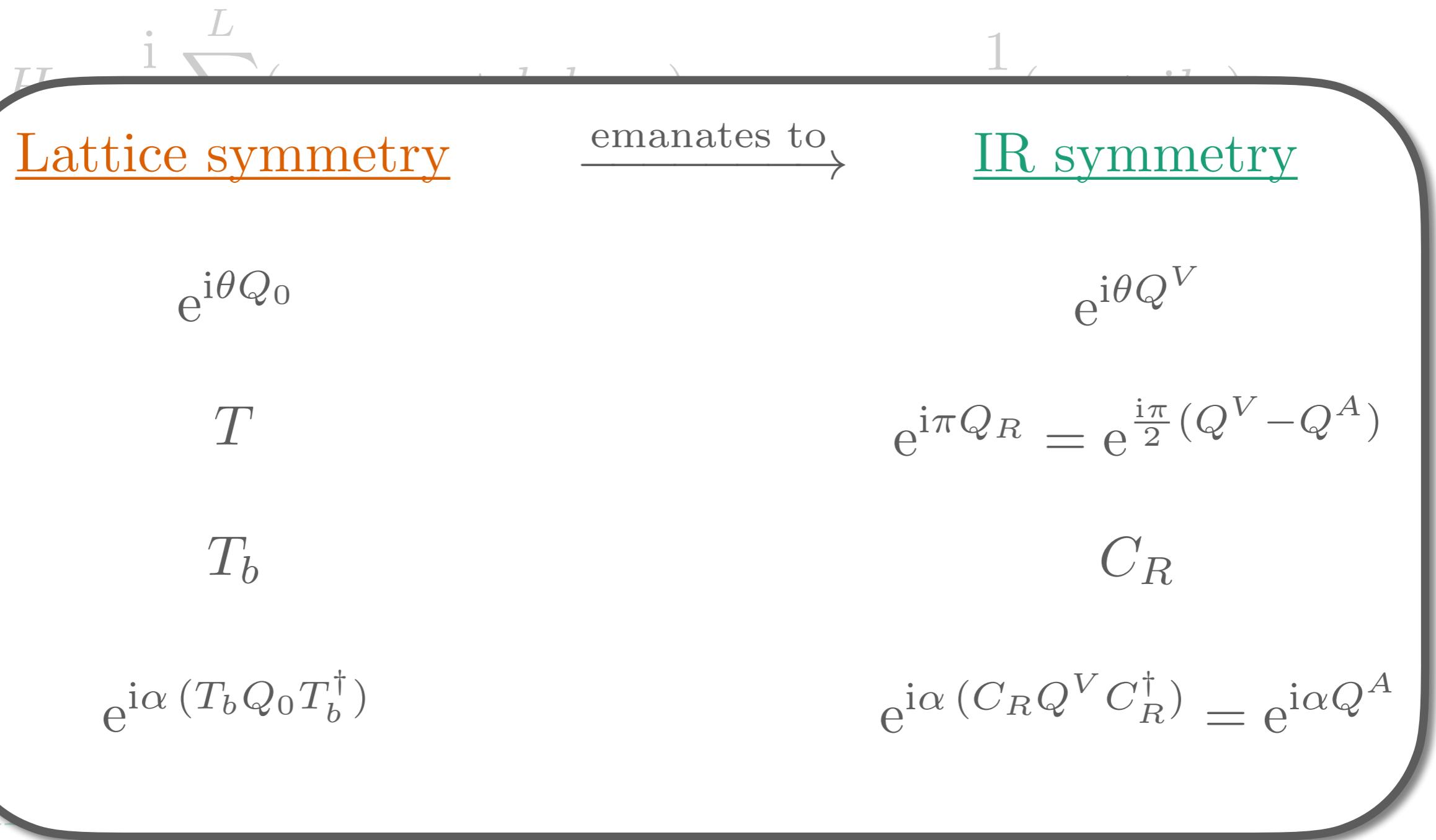
$$Q^A = C_R Q^V C_R^\dagger$$



$$T_b : \Psi_L, \Psi_R \mapsto \Psi_L, \Psi_R^\dagger$$

Emenant symmetries III

$$Q^A = C_R Q^V C_R^\dagger$$



$$T_b : \Psi_L, \Psi_R \mapsto \Psi_L, \Psi_R^\dagger$$

Lattice vector and axial charges

The **IR vector** and **axial** charges emanate from the conserved charges

- Lattice **vector** charge $Q_0 = \frac{i}{2} \sum_{j=1}^L a_j b_j$
- Lattice **axial** charge $Q_1 \equiv T_b Q_0 T_b^{-1} = \frac{i}{2} \sum_{j=1}^L a_j b_{j+1}$
- 1. Sum of **local** terms
- 2. Have integer-quantized eigenvalues
- 3. Generate locality preserving **U(1)** symmetries

Onsager symmetry

The lattice **vector** and **axial** charges do not commute

$$[Q_0, Q_1] \neq 0 \xrightarrow{\text{IR limit}} [Q^V, Q^A] = 0$$

Q_0 and Q_1 generate the **Onsager** algebra [Onsager '44]

► Let $Q_n = \frac{i}{2} \sum_{j=1}^L a_j b_{j+n}$ and $G_n = \frac{i}{2} \sum_{j=1}^L (a_j a_{j+n} - b_j b_{j+n})$

$$[Q_n, Q_m] = iG_{m-n} \quad [G_n, G_m] = 0$$

$$[Q_n, G_m] = 2i(Q_{n-m} - Q_{n+m})$$

Onsager symmetry

The lattice **vector** and **axial** charges do not commute

The **chiral** $(U(1)^V \times U(1)^A)/\mathbb{Z}_2$ symmetry **emanates** from the Onsager symmetry $\langle e^{i\theta Q_0}, e^{i\alpha Q_1} \rangle$

$$Q_n \xrightarrow{\text{IR limit}} \begin{cases} Q^V & n \text{ even} \\ Q^A & n \text{ odd} \end{cases}$$

$$G_n \xrightarrow{\text{IR limit}} 0$$

Onsager symmetry

The lattice **vector** and **axial** charges do not commute

The **chiral** $(U(1)^V \times U(1)^A)/\mathbb{Z}_2$ symmetry **emanates** from the Onsager symmetry $\langle e^{i\theta Q_0}, e^{i\alpha Q_1} \rangle$

$$Q_n \xrightarrow{\text{IR limit}} \begin{cases} Q^V & n \text{ even} \\ Q^A & n \text{ odd} \end{cases} \quad G_n \xrightarrow{\text{IR limit}} 0$$

Does the Onsager symmetry have a **lattice anomaly** that matches the **chiral anomaly**?

Onsager symmetric Hamiltonians

We assume the Hamiltonian is local:

$$H_g = \sum_n \sum_{j=1}^L g_{j,n} H_j^{(n)}$$

Onsager symmetric Hamiltonians

We assume the **Hamiltonian** is local:

$$H_g = \sum_n \sum_{j=1}^L g_{j,n} H_j^{(n)}$$

1. $e^{-i\frac{\pi}{2}Q_1} e^{i\frac{\pi}{2}Q_0} : (a_j, b_j) \mapsto (a_{j-1}, b_{j+1})$ invariance requires $H_j^{(n)}$ to not have terms **mixing** a_j and b_j and $g_{j,n} = g_n$

Onsager symmetric Hamiltonians

We assume the Hamiltonian is local:

$$H_g = \sum_n \sum_{j=1}^L g_{j,n} H_j^{(n)}$$

1. $e^{-i\frac{\pi}{2}Q_1} e^{i\frac{\pi}{2}Q_0} : (a_j, b_j) \mapsto (a_{j-1}, b_{j+1})$ invariance requires $H_j^{(n)}$ to not have terms **mixing** a_j and b_j and $g_{j,n} = g_n$
2. Under the $e^{i\theta Q_0}$ transformation

$$a_j \rightarrow \cos(\theta)a_j + \sin(\theta)b_j \quad b_j \rightarrow \cos(\theta)b_j - \sin(\theta)a_j$$

\implies Symmetric $H_j^{(n)}$ are quadratic

$$H_j^{(n)} = ia_j a_{j+n} + ib_j b_{j+n}$$

Lattice anomaly: enforced gaplessness

$$H_g = i \sum_n \sum_{j=1}^L g_n (a_j a_{j+n} + b_j b_{j+n})$$

- H_g commutes with the entire **Onsager symmetry** — it is the most general Onsager symmetric **Hamiltonian**

Lattice anomaly: enforced gaplessness

$$H_g = i \sum_n \sum_{j=1}^L g_n (a_j a_{j+n} + b_j b_{j+n})$$

- H_g commutes with the entire **Onsager symmetry** — it is the most general Onsager symmetric **Hamiltonian**

Every Onsager symmetric **Hamiltonian** H_g is **gapless**

- In momentum space:

$$H_g = \sum_{k \in \text{BZ}} \omega_k c_k^\dagger c_k \quad \omega_k = 4 \sum_n g_n \sin(nk)$$

- H_g is never in a trivial gapped phase
- This Onsager symmetry has a **lattice anomaly**

Lattice anomaly: enforced gaplessness

$$H_g = i \sum_n \sum_{j=1}^L g_n (a_j a_{j+n} + b_j b_{j+n})$$

- H_g commutes with the entire Onsager symmetry — it is the

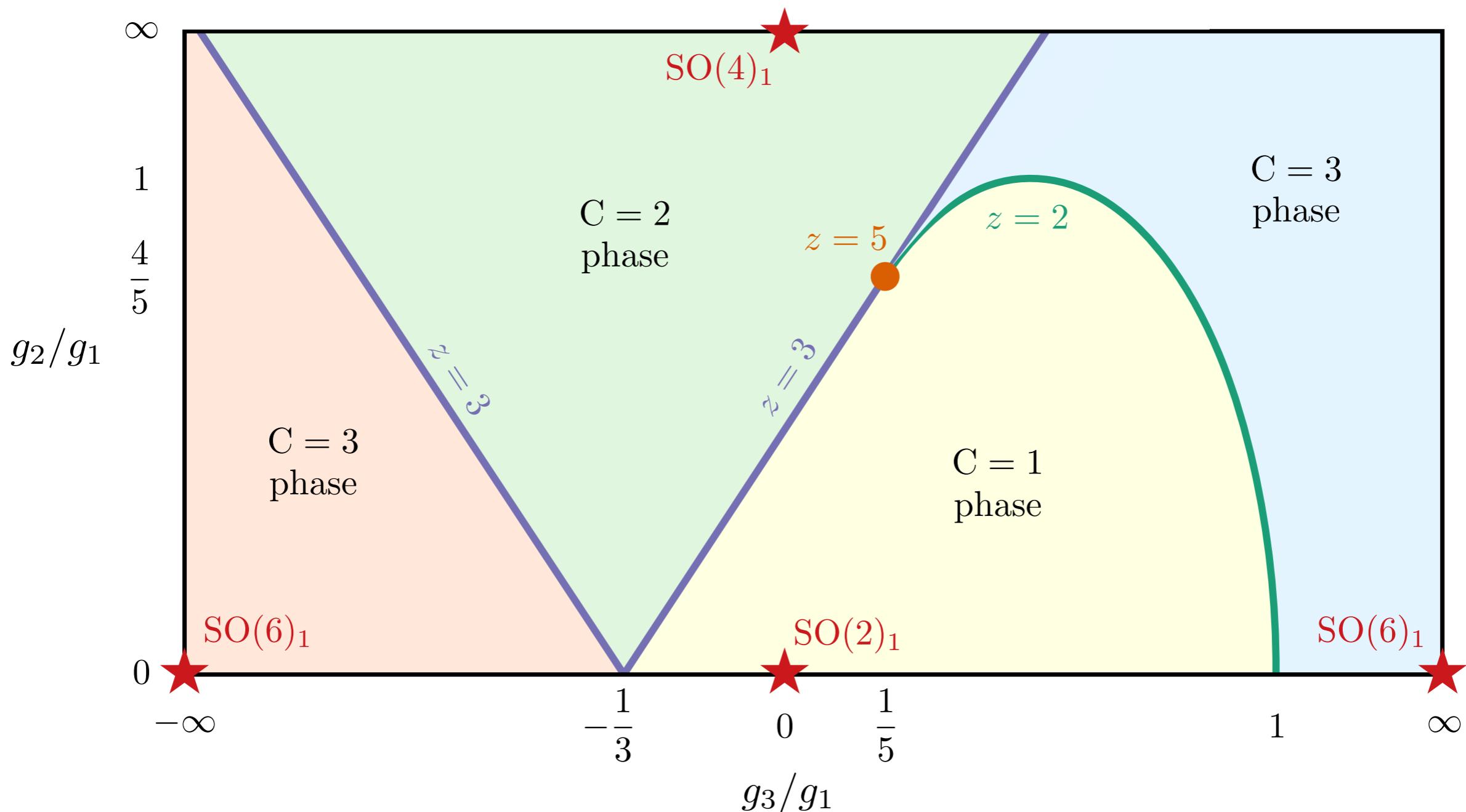
The **chiral anomaly** emanates from the Onsager symmetry's **lattice anomaly**

- The fact that the **lattice anomaly** enforces gaplessness is consistent—the **chiral anomaly** is a **local anomaly** and enforces gaplessness in QFT

- H_g is never in a trivial gapped phase
- This Onsager symmetry has a **lattice anomaly**

Gapless phase diagram

$$H = i \sum_{n=1}^3 \sum_{j=1}^L g_n (a_j a_{j+n} + b_j b_{j+n})$$



Summary

Anomalies 101

1. **Anomalies** as obstructions to trivial gapped phases
2. Emergent vs emanant **anomalies**

Summary

Anomalies 101

1. **Anomalies** as obstructions to trivial gapped phases
2. Emergent vs emanant **anomalies**

Lattice chiral anomaly [Arkya Chatterjee, **Sal Pace**, Shu-Heng Shao, PRL '25 (arXiv:2409.12220)]

The simple **tight-binding model** $H = i \sum_{j=1}^L (c_j^\dagger c_{j+1} - c_{j+1}^\dagger c_j)$

1. Has a lattice vector and axial symmetry, which form the **Onsager algebra**
2. Has a **lattice anomaly** that enforces gaplessness, from which the **chiral anomaly** emanates

Summary

Anomalies 101

Other lattice anomalies from Onsager-like symmetries:

- Compact boson CFT anomalies in spin chains
[Sal Pace, Arkya Chatterjee, Shu-Heng Shao, SciPost Phys '25 (arXiv:2412.18606)]
- Witten's $SU(2)$ anomaly on the lattice
[L. Gioia, R. Thorngren, arXiv:2503.07708]
- Lattice parity anomaly: symmetry-enforced Dirac cones
[Sal Pace, Luke Kim, Arkya Chatterjee, Shu-Heng Shao, arXiv:2505.04684]
- Lattice $LU(1)$ anomaly: symmetry-enforced Fermi surfaces
[Luke Kim, Sal Pace, Shu-Heng Shao, *to appear*]

which the chiral anomaly emanates

Back-up slides

Lattice vector and axial charges II

In terms of **complex fermions**

► Lattice **vector** charge $Q_0 = \sum_{j=1}^L \left(c_j^\dagger c_j - \frac{1}{2} \right)$

► Lattice **axial** charge

$$Q_1 = \frac{1}{2} \sum_{j=1}^L \left(c_j^\dagger c_{j+1} - c_j c_{j+1}^\dagger + c_j c_{j+1} - c_j^\dagger c_{j+1}^\dagger \right)$$

► Generate locality preserving **U(1)** symmetries

$$e^{i\theta Q_0} : c_j \mapsto e^{-i\theta} c_j$$

$$e^{i\alpha Q_1} : c_j \mapsto \cos(\alpha) c_j - \frac{i}{2} \sin(\alpha) (c_{j-1}^\dagger + c_{j-1} - c_{j+1}^\dagger + c_{j+1})$$

An anomaly in quantum spin chains

Consider model with a **qubit** on each site j of a length L ring

$$\mathcal{H} = \bigotimes_{j=1}^L \mathbb{C}^2 \quad X_j = X_{j+L} \quad Z_j = Z_{j+L}$$

Anomalous $\mathbb{Z}_2^X \times \mathbb{Z}_2^Z \times$ (lattice translations) **symmetry**

$$U_X = \prod_{j=1}^L X_j \quad U_Z = \prod_{j=1}^L Z_j \quad T: j \mapsto j + 1$$

An anomaly in quantum spin chains

Consider model with a **qubit** on each site j of a length L ring

$$\mathcal{H} = \bigotimes_{j=1}^L \mathbb{C}^2 \quad X_j = X_{j+L} \quad Z_j = Z_{j+L}$$

Anomalous $\mathbb{Z}_2^X \times \mathbb{Z}_2^Z \times$ (lattice translations) **symmetry**

$$U_X = \prod_{j=1}^L X_j \quad U_Z = \prod_{j=1}^L Z_j \quad T: j \mapsto j + 1$$

Manifestations of the **anomaly**:

- U_X and U_Z have a QM **anomaly** in each unit cell
- $U_X U_Z = (-1)^L U_Z U_X$

An anomaly in quantum spin chains

Consider model with a **qubit** on each site j of a length L ring

$$\mathcal{H} = \bigotimes_{j=1}^L \mathbb{C}^2 \quad X_j = X_{j+L} \quad Z_j = Z_{j+L}$$

Anomalous $\mathbb{Z}_2^X \times \mathbb{Z}_2^Z \times$ (lattice translations) **symmetry**

$$U_X = \prod_{j=1}^L X_j \quad U_Z = \prod_{j=1}^L Z_j \quad T: j \mapsto j + 1$$

Every **symmetric Hamiltonian** cannot have a trivial gapped phase

- e.g., XX chain $H = \sum_{j=1}^L (X_j X_{j+1} + Y_j Y_{j+1})$
- Called a Lieb-Schultz-Mattis (LSM) **anomaly**

An anomaly in field theory

The **compact boson CFT** at radius R is a 1 + 1D CFT with

$$\mathcal{L}_R = \frac{R^2}{4\pi} \partial_\mu \Phi \partial^\mu \Phi \quad \Phi \sim \Phi + 2\pi$$

- Has a $(\mathrm{U}(1)^M \times \mathrm{U}(1)^W) \rtimes \mathbb{Z}_2^C$ symmetry:

$$J_\mu^M = \frac{R^2}{2\pi} \partial_\mu \Phi \quad J_\mu^W = \frac{1}{2\pi} \epsilon_{\mu\nu} \partial^\nu \Phi \quad C: \Phi \mapsto -\Phi$$

An anomaly in field theory

The **compact boson CFT** at radius R is a 1 + 1D CFT with

$$\mathcal{L}_R = \frac{R^2}{4\pi} \partial_\mu \Phi \partial^\mu \Phi \quad \Phi \sim \Phi + 2\pi$$

- Has a $(\mathrm{U}(1)^M \times \mathrm{U}(1)^W) \rtimes \mathbb{Z}_2^C$ symmetry:

$$J_\mu^M = \frac{R^2}{2\pi} \partial_\mu \Phi \quad J_\mu^W = \frac{1}{2\pi} \epsilon_{\mu\nu} \partial^\nu \Phi \quad C: \Phi \mapsto -\Phi$$

Anomalous symmetries:

- $\mathrm{U}(1)^M \times \mathrm{U}(1)^W$ and $\mathbb{Z}_2^M \times \mathbb{Z}_2^W \times \mathbb{Z}_2^C$
- Manifestation of $\mathrm{U}(1)^M \times \mathrm{U}(1)^W$ **anomaly**:

$$\partial^\mu J_\mu^W = 0 \xrightarrow{\text{turn on } A_\mu^M} \partial^\mu J_\mu^W = \frac{1}{2\pi} E^M$$

Anomaly matching

Anomalies of the effective **IR** theory either emerge from nothing or emanate from an **anomaly** of the **UV**

Anomaly matching

Anomalies of the effective **IR** theory either emerge from nothing or emanate from an **anomaly** of the **UV**

Example: **XX** spin chain $\longrightarrow R = \sqrt{2}$ boson CFT

$$\mathbb{Z}_2^X$$

$$\mathbb{Z}_2^C$$

$$\mathbb{Z}_2^Z$$

$$\mathbb{Z}_2^M$$

Translations

$$\mathbb{Z}_2^{\text{diag}} \subset \mathbb{Z}_2^M \times \mathbb{Z}_2^W$$

[M. A. Metlitski, Thorngren '17; M. Cheng, N. Seiberg '22]

- **Anomaly** of $\mathbb{Z}_2^{\text{diag}}$ is emergent
- **Anomaly** of $\mathbb{Z}_2^M \times \mathbb{Z}_2^W \times \mathbb{Z}_2^C$ emanates from **LSM anomaly**